多肽类仿制药在一致性评价应关注的问题

2023-12-21 13:39:16, 基泰生物 上海基泰生物科技有限公司


多肽类仿制药

在一致性评价应关注的问题

01

随着GLP-1的热卖,国内外很多企业都加入了赛道,多肽成立为炙手可热的产品,对于多肽类仿制药在一致性评价应关注的问题,我们展开来说说。

02

多肽原料药质量

多肽原料药质量控制相对复杂,在《制备工艺和过程控制对合成多肽药物有关物质的影响》和《合成多肽药物质控及杂质谱研究》中阐述了如何结合保护氨基酸质量控制、缩合过程控制、纯化控制、中间体控制等综合实现多肽类药物的质量控制。

在此需要明确合成多肽药物的过程控制更为重要,是多肽类仿制药申请和一致性评价申请提升质量的重点。

在全面研究的基础上,才可能实现对多肽类药物的充分质控,仅靠检测手段可能无法有效评估产品质量,以下分享2个可能引起多肽类药物质量风险的实例。

对于小分子化学药,合成路线不同造成杂质谱的差异有限,经过相应的分析及研究基本可全面覆盖潜在杂质谱的差异。多肽类药物不同于小分子化学药,其合成路线较多,同一条肽链可以利用固相合成、液相合成、固相液相结合的片段合成等手段制备,即合成路线选择较多,造成工艺杂质与参比制剂存在较大差异。

从目前申报资料上看,国内基本采用从C端到N端逐步偶联的手段制备,而多数国外原研企业采用固相合成制备多肽片段,再偶联成整条肽链。暂且不分析合成路线合理性问题,但不同合成路线可能导致杂质谱存在较大差别。

以美国药典收载的艾塞那肽为例,尽管药典收载的有关物质分析方法多达3种,但有部分申请人开发之后仍发现药典收载方法存在不可检出的工艺杂质。

药典收载的方法可能主要源于原研品方法,由于仿制企业采用的合成路线不同,所产生的杂质谱不一致。仅采用药典或原研进口注册标准的有关物质分析方法可能无法全面揭示仿制药杂质水平,进而导致产品质量存在风险。

因此,对于多肽类药物需进行详细的杂质谱分析并采用相应的杂质对照品对分析方法的检出能力进行全面验证,仅采用已有的分析方法进行考察,很可能造成杂质漏检等质控缺陷。对于杂质含量方面,需要注意某些杂质即便满足安全水平范围,但也可能对多肽药物的稳定性存在较大影响。

比如,某多肽类药物收载于《中华人民共和国药典》,药典对有关物质的要求为最大未知单杂不得过2.0%。

在审评过程中发现按药典收载方法检测,参比制剂主峰后为单一杂质峰,多数国产制剂主峰后存在2个杂质峰,其中1个杂质峰与参比制剂杂质峰相对保留时间相同,应该为同一杂质,多出的杂质峰为新增未知杂质。杂质含量未超过最大未知单杂的控制限度要求。

尽管初始杂质水平较低且符合药典要求,但在稳定性考察过程中,新增的未知杂质增长较快,12个月后已接近控制限度要求,而参比制剂主峰后仍基本维持一个杂质峰。分析该杂质可能是酰胺类水解杂质,在体系内残留的少量杂质可能发生类似“链引发”反应,造成仿制产品的杂质增长水平远高于参比制剂。

03

多肽类药物的结构

结构是基础,如果结构上存在差异,仿制产品的活性可能弱于参比制剂,甚至没有活性。

多肽类药物结构确证与小分子药物存在较大差别,可能具有高级结构,常用可以反映多肽药物结构的方法如下。

一级结构确证方法:可以采用质谱测定其分子量,用质谱结合酶切进行肽序的鉴定,或者采用Edman降解进行肽序的鉴定。

二级结构确证方法:多肽二级结构实际上是肽链因氢键而形成的局部结构,研究手段有X-射线单晶衍射、二维NMR、FT-IR及远紫外CD等方法。其中X-射线单晶衍射及二维NMR测的最为准确,但多肽的单晶不易培养,而且不代表溶液中的真实情况,而二维NMR耗时长、解析困难,并且分析通量低,所以这2种方法一般用得较少;目前采用最多的是FT-IR与远紫外CD法。

三级结构确证方法:对于复杂多肽可能有三级结构存在,三级结构研究常用的方法有荧光光谱及近紫外CD等,其原理是利用芳香氨基酸侧链的微环境变化带来荧光发射光谱和近紫外CD谱的差异。但该方法目前只能进行定性对比研究,无法进行明确的结构确证,只能作为三级结构研究的参考。

四级结构确证方法:多肽及蛋白功能性聚集是高级结构的一种反映,它包含两方面信息:聚集单体的数量和聚集后的空间构象。常用的分析方法包括场流分离、超速离心。

生物活性研究方法:由于高级结构确证可能存在一定的不确定性,可通过测试生物活性间接证明多肽类药物高级结构的正确性。如表2所统计已收入美国药典的11个多肽类药物有4个制剂和1个原料药需要测定生物活性,越来越多的多肽类药物需要增加生物活性的研究和检测。

目前,对于多肽及蛋白的活性研究有体外(in vitro)及体内(in vivo)2种路径。

in vitro评价方法包括但不限于酶动力学、结合力测定、生物活性测定。其中酶动力学测定采用酶促反应;结合力测定,如果是分子之间采用表面等离子共振技术(SPR)、生物膜层干涉技术(BLI)以及微量差示扫描量热技术(NanoDSC)等技术完成,如果是和细胞表面的受体结合一般采用均相时间分辨荧光等技术完成;生物活性一般采用药物刺激细胞,采用均相时间分辨荧光等技术检测其产生的化学物质来完成。

in vivo评价一般采用动物或动物器官,如机理明确则检测具体某种化合物指标,如不明确则观察具体的治疗效果。例如可采用小鼠的EAE模型来评价醋酸格拉替雷对多功能硬化症的症状延迟及减轻效果。

对于多肽类药物而言,结构确证部分不同于小分子化学药物。小分子化学药物一般在原料药部分明确结构后,制剂开发中可不用进一步研究。而多肽药物由于高级结构的不确定性,部分需要在制剂中与参比制剂进行对比研究,以确定某一结构含量与参比制剂的一致性。

同时,由于多肽类药物高级结构与其所处环境有关,在结构测试过程中可能脱离药物实际使用环境,因此有必要采用多种相互补充的分析方法对比研究仿制品与参比制剂结构的一致性。

在此需要明确,并不是所有多肽类药物都存在高级结构,在合成中存在高级结构的药物仅占少数。在此建议产品开发者先通过参比制剂信息、文献、专利等方面综合检索,明确是否存在高级结构,再选择适合的结构确证手段进行研究,避免过度开发。

04

质量研究方面

研究者应结合多肽药物的自身特点,在质量研究中进行针对性考察。

对于稳定性差的多肽类药物,应关注pH值、性状、复溶时间、初始杂质水平等是否与参比制剂一致。可能会存在质量标准控制限度较宽,仿制品可满足拟定质量标准要求,但与参比制剂相比仍存在一定差异的现象。

上述差异可能说明多肽类药物所处的微环境与参比制剂存在差异,在长期稳定性考察中pH值、有关物质、不溶性微粒等检查项目有可能出现问题,研究者应该重视上述差异,理解并查找原因,以免长期稳定性考察中出现问题,影响申报进度。

有关物质是多肽类药物制剂质量研究的重点项目之一,制剂质量研究应结合原料药有关物质考察结果,关注对降解杂质的考察,需要重点关注聚合物杂质。

多肽含有二硫键、裸露的氨基和羧基等,很容易因分子间二硫键或氨基羧基间的脱水形成聚合物。

研究者应明确高分子杂质是由共价键形成的聚合物、分子间力形成的聚集体还是肽链固定的高级结构。如是共价键形成的聚合物,则可能存在较大免疫原性风险,应确定与参比制剂中该杂质的结构一致性,并确保其含量在安全的限度以内。


  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018
  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018

Copyright ©2007-2024 ANTPEDIA, All Rights Reserved