ICP-MS技术漫谈V--碰撞/反应池CCT技术之于icpTOF:复杂基体高时间分辨率测量中充分非必要之选

2024-03-14 09:52:36, Marcel Burger等 TOFWERK中国-南京拓服工坊


今日热点

NEWS

2024.3.13

ICP-MS技术漫谈V--碰撞/反应池CCT技术之于icpTOF:复杂基体高时间分辨率测量中充分非必要之选

TOFWERK

ICP-MS技术漫谈系列前篇回顾

ICP-MS技术漫谈I: CeO+/Ce+ 和 BaO+/Ba+分不清楚?

ICP-MS技术漫谈II icpTOF飞行时间质谱仪“免疫系统” – Notch Filter陷波技术

ICP-MS技术漫谈III ICP-MS 谱图多原子离子干扰区分所需质量分辨率

ICP-MS技术漫谈IV 无海平面,何来山峰海拔高度:论icpTOF全谱原始数据(包含基线信号)记录之重要性

ICP-MS技术漫谈V 本文CCT模式

TOFWERK ICPTOF

自1980年首次推出以来,电感耦合等离子体质谱ICP-MS技术已在多个领域(如地质学、环境科学、材料科学、法医学、考古学、生物学及医学等),成为一种成熟且广泛应用的多元素及同位素分析方法。ICP-MS以其卓越的灵敏度、低检出限、宽线性动态范围和多同位素检测能力而著称,同时还能与多种样品处理/进样技术(如色谱、电热蒸发、(单)微液滴生成和激光剥蚀等)耦合使用。同有机质谱类似,质谱干扰也是影响ICP-MS准确测量多种元素的主要挑战。这些干扰主要来源于单价或双价的原子及分子离子,其产生与等离子体、样品组成、ICP操作条件及相关样品的物理化学特性有关。目前,处理这些干扰的策略包括利用多极离子导引器与上游质量分析器内通入气体进行的离子-分子反应或产生动能差异,以及采用超高分辨率磁扇区ICP-MS技术以区分多原子干扰物。

使用有选择性的化学反应来减少对目标元素的干扰并将产生的附加干扰物的离子转移到未被占用的质荷比(m/z)通道,是一种有效的解决质谱干扰问题的方法。例如,引入氢气H₂作为反应气体能显著减弱由氩离子(Ar⁺)及基于氩的多原子离子所引起的背景干扰,使得能够在其丰度最高的同位素峰上检测到钙(Ca)、铁(Fe)或硒(Se)。此过程中主要的反应产物为H₃⁺,不会引入额外的干扰信号,从而提高了分析的准确性和灵敏度。这种方法通过改变干扰物质的质荷比来“清理”分析信号,使得原本由于干扰而无法检测的元素或同位素得以准确测定。

本文中,研究人员探讨了电感耦合等离子体-飞行时间质谱(ICP-TOF-MS)结合碰撞/反应池技术(CCT)在高时间分辨率分析中的应用优势,特别是在使用多样的样品引入技术,包括高速激光剥蚀和微液滴生成。通过在CCT中采用氢气(H₂)作为反应气和氦气(He)作为碰撞气,研究着重于多元素测定的能力,特别是在抑制基于氩的背景离子、提高多同位素灵敏度和优化激光剥蚀定量分析方面。这些CCT中的气体分子和离子束发生化学反应或者物理碰撞,从而实现清除某些特定的同位素,或者将多原子离子解离。

使用H₂作为反应气体时,能够显著降低氩离子(Ar⁺)和氩分子离子(Ar₂⁺)的信号,使得钙(Ca)和硒(Se)的丰度最高的同位素得以检测。此外,降低Ar⁺信号时还允许在进行飞行时间分析前,无需陷波技术(notch filter)来选择性减弱特定质荷比(m/z)信号值,从而改善了质荷比40和80附近同位素的传输效率。

研究发现,以不超过4mL/min的流量引入氢气、氦气或两者混合气体,可以通过碰撞诱导聚焦机制将离子检测灵敏度提升1.5至2倍,并且质量分辨率也提高了16%。使用CCT后,钙(40Ca)的检出限(LOD)提高了超过三个数量级,硒(80Se)的检出限(LOD)提高了一个数量级。对于NIST SRM610标准中的多种元素,检出限均提高了2到4倍,同时在大多数元素上保持了定量准确性(小编注:如果应用偏重于轻质量数元素分析,可以通过关闭CCT模式来达到最优效果)。

实验还表明,当采用微液滴样品引入技术时,碰撞池中的He缓冲气体量会导致单个微液滴信号的宽度增加至数十至数百微秒。但是,高速激光剥蚀产生的单气溶胶羽流事件的持续时间未受碰撞效应影响,表明在100 Hz的激光剥蚀频率下,即使开启CCT,也不会对成像效果产生显著影响。这些发现强调了CCT在提高ICP-TOF-MS性能和分析精度方面的潜力,尤其是对于高时间分辨率的多元素分析。

01

实验参数和设置

实验是在瑞士TOFWERK AG公司生产的icpTOF仪器上进行的,该仪器与多种样品引入系统相结合使用。icpTOF装备有陷波滤波器,位于碰撞/反应单元(CCT)下游,用于精确调控飞行时间(TOF)谱图中多达四个特定质荷比(m/z)的高信号强度。通过调整频率和振幅,可以选择性地衰减特定m/z离子信号,同时这也会影响到相邻的m/z。在进行激光剥蚀(LA)实验时,通常只需衰减氩离子(Ar+)的信号,以避免信号饱和导致探测器损坏。

表1:在不同实验设置的情况下,ICP-TOFMS的运行参数和碰撞/反应池的设置。

碰撞/反应单元操作:

碰撞/反应单元使用的氦气(99.999%纯度,由瑞士Dagmersellen的PanGas AG提供)和氢气(99.9999%纯度,同样由PanGas AG提供)或这些气体的混合物进行加压。气体的流量通过质量流量控制器进行精确控制,使用Micro Torr气体净化器(由加利福尼亚的SAES Pure Gas, Inc.提供)来去除气体中的杂质。在需要进行离子束衰减的实验中,调整陷波滤波器的操作参数以确保背景信号的总强度维持在500 kcps以下。

激光剥蚀导入:

激光剥蚀实验在NIST SRM610、NIST SRM612和USGS BCR-2G标准样品上进行。使用的是193nm ArF准分子激光剥蚀系统(GeoLasC,由德国哥廷根的Lambda Physik提供)。高分散LA实验在一个充满氦气的单体积圆柱形剥蚀室中进行,使用44μm直径的圆形激光光斑和10Hz的激光剥蚀频率,单脉冲信号的持续清洗时间为1.5-2秒(FW0.01M)。低分散LA实验在一个双体积管状样品池中进行,使用5μm直径的圆形光斑和100Hz的激光频率,单脉冲信号的持续清洗时间小于10毫秒(FW0.01M)。所有实验都采用线扫描模式,扫描速度分别为5μm/s(高分散)和50μm/s(低分散)。通过调节操作参数,实验每天都能在保持相近的铀(238U)和钍(232Th)的灵敏度以及低氧化物生成率的同时,获得最高的238U+灵敏度。高分散LA-ICP-TOFMS数据的采集时间分辨率为1秒,而低分散LA-ICP-TOFMS数据的采集时间分辨率为1毫秒。在后处理中,对TOF质谱进行了重新校准和基线去除。

微液滴导入:

微液滴导入实验使用的是德国Microdrop Technologies GmbH公司的商用微滴生成器(MD-K-150-020和MDE-3001,配备30微米直径喷头)。在50Hz的条件下产生直径为25到30微米不等的液滴,并通过氦气和氩气传输到ICP。多元素标准溶液由单元素标准溶液制备而成(由德国达姆施塔特的Merck AG和美国弗吉尼亚克里斯琴斯堡的Inorganic Ventures提供),每个元素的最终浓度通常为100 ng/g。

02

实验结果

使用氢气作为反应气体以衰减背景信号:

本研究的激光剥蚀NIST SRM610实验是在仪器参数优化后进行的。实验使用高色散LA-ICPTOFMS装置,并在反应池中通入不同流量的氢气。除了氢气流量和陷波滤波器的设置外,三个实验中的ICP-TOFMS操作参数和碰撞/反应池设置保持恒定。图1报告了气体背景信号强度的平均值。当通入氢气流量大于1.5mL/min以上,m/z=40的信号是无需使用陷波滤波器进行衰减的。

气体背景信号分析虽然仅反映了仪器在不引入样品时的背景信号情况,但这种分析并不完全代表分析特定样品时的背景信号水平,因为样品基质可能会提升基线信号。尽管存在这一局限性,此类测量对于估计激光剥蚀实验中的背景信号强度仍然非常有用,特别是低背景信号对于实现更佳的检出限(LOD)至关重要。在不引入氢气的条件下,背景信号主要由Ar+离子及其相关的氩基分子离子(例如Ar2+、ArN+和ArO+)贡献,同时H2O+、N2+和O2+也展现出显著的峰值。ICP-TOFMS的丰度灵敏度特性导致这些背景离子增加了质谱的基线水平。

通过向CCT中增加氢气流量,Ar+信号可以显著衰减至每秒几百次的强度水平。特别是当氢气流量达到5 mL/min时,Ar2+的信号可以降低超过四个数量级,达到每秒几个的强度水平。这一衰减效果涉及到的反应主要是氢原子的转移,例如Ar+转变为ArH+,使得在质谱中m/z=37和m/z=41位置的信号变得占主导地位。在更高的氢气流量下,ArH+通过质子转移的方式进一步减少。

图1:分析m/z小于100的范围内的平均背景信号强度与通入氢气流量的关系。左右两图为同样的数据但被绘制在线性y轴(a)和对数y轴(b)上。当没有氢气流过反应池时,使用陷波滤波器来衰减m/z=40处的信号强度。当H2气体以2.5mL/min和5mL/min则不需要信号衰减。

图2a和c展现了在高色散LA-ICP-TOFMS条件下,特定同位素(27Al、55Mn、89Y、141Pr、238U)的灵敏度与氢气和氦气流量之间的关系。这些同位素覆盖了广泛的m/z范围。对于氢气和氦气,灵敏度随气体流量增加先升高后降低,显示出相似的趋势。特别是,对于55Mn,在气体流量为1 mL/min时,其灵敏度达到最大值,与不通气的标准条件相比,分别增加了28%(氢气)和84%(氦气)。对于27Al,在氢气流量为0.5 mL/min时灵敏度最高,而对于238U,在氢气流量为1.5 mL/min时灵敏度最高,相较于不通气的标准条件,它们的灵敏度分别提高了11%(27Al)和2%(238U)。在通入氦气时,27Al和238U的灵敏度分别在氦气流量为0.5 mL/min和3.5 mL/min时达到峰值,相比不通气的标准条件,它们分别提高了3%(27Al)和73%(238U)。灵敏度的提升主要归因于碰撞聚焦效应。随着m/z增大,较高的气体浓度下灵敏度的下降趋势减缓,这与低质量离子的速度减慢和散射过程加快有关。

同位素238U+/232Th+的信号强度比随气体流量的增加而稳步上升,在通入氢气和氦气时分别从1.25增加到1.36和从1.31增加到1.47。这表明在通入气体时,Th+的减少速度超过U+。这可能是由于Th+与气体中的杂质反应或散射过程。然而,鉴于U和Th的碰撞截面和动能相似,散射过程的影响可能较小。Th+相对于U+更快的减少可能与其与气体中水分子的反应有关。

同时,137Ba++/137Ba+的信号强度比随着气体流量的增加先上升后下降,这一趋势在通入氢气和氦气时均被观察到。这表明Ba++的透射率最初随气体流量的增加而提高,可能是由于双电荷离子在进入碰撞/反应池前在静电离子光学器件中获得较高的动能。然而,随着气体流量的进一步增加,Ba++离子的反应速率可能超过了Ba+,导致其离子信号强度的连续下降。

图2:灵敏度和选定的离子强度比与通入反应池的氢气H2流量的关系(a)。钙的同位素的检出限与通入反应池的氢气流量的关系(b)。在低于1.5mL/min的氢气流量设置时,每种氢气流量设置都会相应调整陷波滤波器上的设置,以保持尽可能高的灵敏度,同时防止检测器饱和。对于H2气体流量大于1.5mL/min,则未启用陷波滤波器。灵敏度和选定的离子强度比与通过碰撞池的氦气He流量的关系(c)。质量分辨率和灵敏度与通过碰撞池的氦气流量的函数关系(d)。在此实验期间,陷波滤波器设置保持不变,m/z=40处的信号强度必须始终衰减。所有实验均在NIST SRM610上进行,使用直径44微米的圆形光斑和10Hz的激光频率。实验采用线扫描模式进行,扫描速度为5µm/s。

03

检出限和氢气气体流量的关系及同位素的选择

图2b展示了多个Ca同位素(40Ca, 42Ca, 43Ca和44Ca)的检出限随着通过反应池的氢气流量变化的情况。在氢气流量为3mL/min时,40Ca的检出限数值最佳,达到0.33mg/kg,这一检出限比CCT模式下其他Ca同位素的检出限好一个数量级以上。与无氢气流的标准条件相比,检出限提升超过了三个数量级,这主要归因于氢气对Ar+信号的选择性衰减,从而显著提升了检出限。随着氢气流量的进一步增加,检出限的上升归结于灵敏度降低。

此外,研究中还观察到Se同位素(特别是80Se)在氢气流量为3.5mL/min时达到了最佳检出限0.95mg/kg,相比于标准条件下可获得的检出限(针对77Se为4.1mg/kg)提高了约四倍。对于238U和89Y,当氢气流量分别达到5mL/min和3.5mL/min时,观察到检出限降低了四倍,这表明通过调整氢气流量,可以显著改善某些特定元素的检出限。

对于27Al,在无氢气通入的条件下其检出限数值最低,但即使在低氢气流量下,27Al的信号也可能因碰撞而衰减。当通入3.5mL/min的氢气时,27Al的检出限恶化了两倍,这表明氢气流量的增加对某些元素的检测性能有负面影响。

这些观察结果说明,在通过反应池的氢气流量对检出限有着显著的影响,不同元素和同位素受氢气流量影响的程度各不相同。通过优化氢气流量,可以在不牺牲其他性能的前提下,针对特定元素达到更低的检出限。对于更多细节和氢气流量与灵敏度及背景信号之间的相关性分析,建议参考原始研究的辅助材料。

04

质量分辨率和丰度灵敏度与He气体流量的函数关系

图2d的结果表明,通过向碰撞池中添加氦气(He)作为碰撞气体,可以略微提高特定同位素的质量分辨率。这一发现对于改善质谱分析的准确性和分辨能力具有重要意义。质量分辨率的提高允许更好地区分质量相近的同位素,从而降低了分析中的误差和不确定性。例如,141Pr和238U的质量分辨率分别在氦气流量为5mL/min和6mL/min时提高了16%和13%。这种效果是由于碰撞导致离子动能的离散度减小,从而使得同位素峰更加尖锐。

与使用氦气相似,实验中也观察到使用氢气(H2)作为反应气体时,同样可以提高质量分辨率。例如,在氢气流量为2.5mL/min时,238U的质量分辨率提高了4%。这进一步证明了通过调整碰撞/反应池中的气体种类和流量,可以有效地优化质谱分析的性能。

在进行了ICP-TOFMS操作参数和碰撞/反应池设置的优化后,特别是在优先考虑峰形而非灵敏度的情况下,238U的质量分辨率可以超过4000。尽管这种优化导致238U的灵敏度降低了7%,但显著提高的质量分辨率对于解决复杂样品分析中的同位素重叠问题至关重要。

此外,通过监测209Bi+在m/z=209和m/z=210处的强度,研究人员还探讨了丰度灵敏度的变化。发现通过将氦气流量提高至3mL/min,可以提高丰度灵敏度。这是因为增加的氦气流量导致重质量侧的质谱峰底部变宽,尽管这种效果在质量分辨率的测定中未能得到充分体现。这一发现强调了在实际应用中,对碰撞/反应池中气体流量和种类的精细调节对于优化质谱分析性能的重要性。

钙的定量与氢气气体流量和同位素选择的关系:图3a和b的研究报告通过使用高色散LA-ICP-TOFMS技术在NIST SRM612和USGS BCR-2G样品中测定钙(Ca)元素含量,并探讨了通过反应池的氢气(H2)流量对测定结果的影响。这项研究选择NIST SRM610和29Si+作为参考样品和内标,因为NIST SRM610与NIST SRM612成分相似,适用于校准,而对于USGS BCR-2G的定量,使用NIST SRM610进行校准则被视为非基质匹配的方法。

研究发现,在没有氢气流的标准条件下,能够测定的Ca浓度主要基于44Ca+的强度,而40Ca+、42Ca+和43Ca+的信号未能检测到高于背景水平。当在NIST SRM612中测定Ca时,发现无论选择哪种同位素,准确度和精确度都遵循相似的趋势,并且在氢气流量低于2.5mL/min时得到提升。这表明低氢气流量有助于提高钙定量的准确度和精确度,而较高的氢气流量则因碰撞引起的信号损失而导致逆向趋势。

此外,2.5mL/min的氢气流量被发现能够实现最准确的Ca测量,基于40Ca强度测得的Ca浓度与GeoReM数据库中的参考值相比,偏差仅为1.3%。在USGS BCR-2G标准样品中,较小的氢气流量同样能够提高Ca定量的准确度和精确度。

然而,Ca离子的强度可能会受到MgO+、MgOH+、AlO+和AlOH+等多原子离子的干扰,尤其是在USGS BCR-2G样品中钙浓度高的情况下。这些干扰主要影响低丰度同位素42Ca+、43Ca+和44Ca+,并且随着H2气体流量增加,其影响也随之增大。研究指出,在NIST SRM和USGS BCR-2G样品中,较高的氢气流量可能有助于减少Ca+/Ar+比率的差异和K+信号的拖尾现象, 但为何在较高H2气体流量下基于40Ca+的定量结果更为准确仍然不明确,

这项研究不仅展示了LA-ICP-TOFMS技术在测定特定元素含量时的应用潜力,也强调了优化氢气流量在提高测定准确度和精确度中的重要性。通过调整反应池中的氢气流量,可以有效地减少多原子离子的干扰,从而实现更准确和精确的元素定量分析。

在2.5mL/min的氢气流量下,研究对NIST SRM612和USGS BCR-2G样品中多种元素的定量能力进行了测试。选择这一氢气流量是基于它能够有效平衡背景信号的衰减和由于碰撞引起的信号损失。结果表明,在没有氢气流量的标准条件下与2.5mL/min氢气流量条件下,大多数元素的定量结果之间没有显著差异。实验数据显示,在无氢气和2.5mL/min氢气条件下,分别有43%和36%的测试元素的浓度落在NIST SRM612的首选值不确定度范围内。同时,大约70%的元素在两种条件下与NIST SRM612的首选值相对偏差小于5%。对于USGS BCR-2G样品,62%(无氢气流)和69%(2.5mL/min氢气流)的元素浓度落在首选值的不确定度范围内,且在这两种实验条件下,大约62%的元素与USGS BCR-2G首选值的相对偏差小于5%。

然而,对于磷(P)、钾(K)和钪(Sc)等某些元素,随着氢气流量的增加,其定量准确性有所降低。这一趋势在两种标准参考材料中均被观察到。分析光谱数据时发现,31P、39K和45Sc的信号强度受到了显著的干扰,这些干扰主要来源于氢化物和氢氧化物,如30Si1H、38Ar1H和28Si16O1H。随着氢气流量的增加,这些干扰物对这三种同位素的影响变得更加明显。

这些发现强调了在使用氢气作为碰撞/反应池气体时,对于绝大多数元素而言,2.5mL/min的氢气流量能够在不牺牲定量准确性的情况下有效减少背景信号,从而提高定量分析的性能。然而,对于易受氢化物和氢氧化物干扰的元素,需要进一步优化实验条件以提高定量分析的准确性。

图3:在NIST SRM612上进行的激光剥蚀实验中,通入反应池的氢气流量和不同钙同位素的定量结果的关系(a)。在USGS BCR-2G上进行的激光剥蚀实验中,通入反应池的氢气流量和同位素选择的量化钙浓度(b)。误差线代表三个单独测量值的标准偏差。红色实线表示标样NIST SRM612和USGS BCR-2G中的钙浓度的参考值,红色虚线是参考值的不确定性范围。蓝色虚线标记与参考浓度的5%偏差。实验使用44微米直径为圆形激光光斑,激光频率10Hz,并以线扫描模式进行,扫描速度为5微米/秒。在这两种情况下,分别选择NIST SRM610和29Si为外部参考材料和内部标准。在这两实验中,如果不使用H2气流,则无法检测到高于背景水平的40Ca+、42Ca+和43Ca+强度。

图4:H2/He气体混合物中H2体积分数对选定同位素归一化灵敏度的影响。本图展示了在1mL/min和3mL/min两种不同总气体流量下,通过碰撞/反应池的实验数据。灵敏度归一化基于未使用碰撞/反应池技术条件下的观测值。所有实验使用NIST SRM610作为样品,在直径为44微米的圆形激光斑点下以10Hz的激光频率进行。实验采用线性扫描模式,扫描速度设置为5μm/s,同时陷波滤波器的配置保持一致。

05

分析物信号与H2/He气体混合比及总气体流量之间的关系

图4展示了随着H2/He气体混合物中氢气体积分数变化,归一化灵敏度的变化情况。我们选取了特定同位素,并在总气体流量分别固定为1mL/min和3mL/min的条件下进行了两组实验。通过将在特定仪器条件下的灵敏度与标准条件(无气体流动的碰撞/反应池)下的灵敏度相比较,计算得到归一化灵敏度。研究结果表明,归一化灵敏度受到总气体流量及氢气与氦气体积比的影响。无论是低质量元素(如55Mn、89Y和141Pr)还是高质量元素(如238U),都显示出对氢氦比例的依赖性,但表现出不同的响应模式。

实验数据表明,低质量元素对气体混合比的变化更敏感。例如,在总气体流量为3mL/min条件下,238U的归一化灵敏度变化为28%,而55Mn为92%。不同元素对最优氢氦混合比和总气体流量的需求各异。例如,对于238U,当总气体流量为3 mL/min,氢气比例为13%时,归一化灵敏度最高。对于141Pr,当总流量为3 mL/min,氢气比例在20%到60%之间时,归一化灵敏度达到最大。而对于55Mn,在总流量3mL/min,氢气比例在40%到65%范围内时,灵敏度最高。少量氦气混入氢气中有助于通过碰撞冷却提高信号,同时氢气能有效抑制背景物质。

此外,氢气还能减弱由氩基物质引起的干扰。通过将少量氦气与1.5mL/min的氢气混合,可以显著提高信号与背景的比例,尤其是对于受氩基干扰的同位素更为明显。例如,当氦气以0.5mL/min和2mL/min的流量混合时,40Ca+和80Se+的信背比分别提高了一倍和五倍。为达到分析目的,需要根据具体情况确定最佳条件。如果目标是最大化选定元素的灵敏度,应调整气体混合比和总流量以实现最高灵敏度。对于需要低检出限的K、Ca或Se等元素,推荐使用1.5mL/min的氢气流量。在此条件下,m/z=40的信号不需通过陷波滤波器衰减,改善了其附近的离子(如39K和41K)的传输效率。然而,这一最小氢气流量是基于仅使用氢气的实验得出的。若结合使用氢气和氦气,实现充分衰减Ar+信号所需的最小氢气流量可能更低,但具体值尚待确定。

图5:在100ng/g多元素溶液中采集2000个单个微液滴信号并计算出平均瞬态信号强度(a)。数据的时间分辨率为30.3微秒且CCT未通入气体。虚线标记了不同同位素最大信号强度的时间。同位素信号强度被标准化为其最大值,以便更好地观察随时间变化(b)

06

CCT中气体流量对离散样品引入产生的信号时间结构的影响

在本研究中,利用微液滴作为引入ICPMS的样品,可产生大约300微秒持续时间的离散信号。得益于微液滴的狭窄尺寸分布,一个微液滴到另一个微液滴所需经历的完全脱溶、原子化、激发和电离的时间高度可重复。这使得此种离散样品引入系统成为研究基础ICP过程的理想工具。本研究使用微液滴来研究碰撞/反应池(CCT)条件对信号结构和持续时间的影响。采用30.3微秒的时间分辨率检测到含有100ng/g多元素溶液的单个微液滴中的同位素信号。从2000个单独微液滴的信号强度中计算得出平均信号强度。可以观察到同位素到达时间的轻微偏移,但偏移的顺序不是由元素的耐火或挥发性质决定的,而是由它们的质量决定的。这些偏移的时间尺度在微秒范围内,表明不同m/z的离子在从等离子体提取后以不同速度移动 (表2)。

表2:最大同位素强度的时间偏移。偏移是根据图5中报告的数据计算得出的,以27Al+同位素的最大强度为参考点,相对于此点报告其他同位素的数据。

通过碰撞池施加氦气流对从单个微液滴检测到的信号结构产生影响。随着氦气流量增加,信号被拉伸。例如,当氦气流量从2.5增加到8.5mL/min时,238U+的瞬态信号宽度从120微秒扩展到600微秒。这一观察可以用离子到达TOF提取区所需时间的增加来解释。尽管离子在离开加压池后的动能分布减少,但一旦它们到达TOF提取器,它们的时间分散就会增加。这是因为与未加压池进行实验相比,它们的行进速度降低了。此外,到达TOF分析器的到达时间序列随着通过CCT的氦气流量的增加而变化。实际上,随着通过CCT的氦气流量的增加,发生了显著的冷却效应,这对轻质量元素的影响大于重质量元素。通过逐渐增加氦流,可以观察到轻质量离子被更多地减速,从而逐渐减少直到消除所有偏移(氦气流量为4mL/min)。将氦流增加到4mL/min以上,轻离子被减速得太多,以至于m/z依赖的偏移序列被逆转。在图6中,选择了三个氦气流量来展示这三种情况;可以首先用<4mL/min的氦气流量观察到时间偏移,然后使用4mL/min的氦气流量消除时间偏移,最后使用不少于6.5mL/min的氦气流量导致偏移序列被逆转。为了利用icpTOF的高时间分辨率,数据采集是使用触发选项来完成的,其中可以连续读出31个光谱。但由于在较高的氦气流量下出现峰尾拖延,图6中报告的数据不得不以60.6微秒的时间分辨率采集。因此,在实验报告的图5中时间分辨率减半的情况下,一些偏移不再被解析,即140Ce+和238U+现在同时出现。

此研究还探讨了碰撞/反应气体流量对低色散激光剥蚀(LA)实验中信号结构的影响。评估了碰撞/反应池技术对低色散LA-ICP-TOFMS成像的适用性,发现当使用不同流量的H2和He进行低色散LA时,没有观察到明显的信号展宽,从5微米直径的圆形激光斑点可以实现小于10毫秒的瞬态信号宽度。以1毫秒的时间分辨率,未检测到不同同位素强度峰值之间的偏移,这表明在以1毫秒时间分辨率进行的实验中,发生在几十到几百微秒时间尺度上的信号结构变化是不重要的。

图6 单个微液滴的信号持续时间和离子到达检测器的时间的偏移与通过碰撞池的氦气流量的关系。图上显示了所选同位素在2.5mL/min (a)、4mL/min (b)和6.5mL/min (c) 氦气流量下的归一化信号强度。数据的时间分辨率是60.6微秒。虚线表示不同同位素强度达到最大值的时间。请注意三个子图的时间坐标轴的差异。

07结论

在本项研究中,作者系统探讨了ICP-TOFMS仪器配合碰撞/反应池技术(CCT)的效果。通过采用多种样品引入方法,包括高分散与低分散激光剥蚀和微液滴发生器,本研究特别关注了H2作为反应气体和He作为碰撞气体对检出限(LOD)、定量性能和信号事件的影响。实验结果表明,使用较小流量的H2、He或它们的混合气体,能显著提升中到高m/z范围的灵敏度。碰撞聚焦效应的程度和灵敏度达到最大值的气体流量随分析物质荷比m/z的不同而变化。大多数元素的灵敏度可提升1.5至2倍。氢气作为反应气体能有效选择性抑制如Ar+和Ar2+这类背景离子的信号,而适量添加氦气能进一步增强碰撞冷却效果,提高对Ar+和Ar2+信号衰减的效率。特别地,最丰富的40Ca和80Se同位素的检出限分别提升了三个数量级和四倍。总体上,使用H2作为CCT中的气体时,其他多种同位素的检出限提高了四倍。对于大部分考察的元素,其定量准确性未受到使用碰撞/反应气体的影响。值得注意的是,在H2气体模式下进行反应时,由于氢化物、氧化物和氢氧根离子的形成,P、K和Sc的表现变差。

利用TOFMS的高频全谱采集能力,以30.3微秒的时间分辨率探究了碰撞/反应气体引起的影响。通过微液滴实验,我们发现m/z相关的离子到达TOF提取区域的时间出现变化,这些偏移可以通过在He气流量为4mL/min时的碰撞冷却或在更高的He流量下得到逆转。信号的展宽和变化发生在数十至数百微秒的时间尺度上,在低分散LA实验中这种变化通常不影响结果,因为剥蚀产生的气溶胶瞬态相对较长。当氢气流量为1.5mL/min时,无需陷波滤波器即可操作设备。在这方面,不采用多通道滤波器而仪器运行时保持H2常开的设置值得深入探索。

(译者小编注:文中提到“不采用多通道滤波器而仪器运行时保持H2常开的设置”,读者需要根据实际情况对仪器运行的设置决策。因为使用氦气/氢气作为碰撞反应气体虽然有优势,但在某些元素的定量测量上并不是理想的设置。通入氢气会引入更多的干扰物,且氢气的安全性也是需要考虑的。综上,更好的解决方式是在需要时开启碰撞反应池(CCT),在通常状态下则关闭CCT。)

参考文献免费获取:

J. Anal. At. Spectrom., 2019, 34, 135-146

https://doi.org/10.1039/C8JA00275D

备注:

翻译仅供学习和参考,内容以英文原文为准。文中图片版权均归JAAS杂志社所有。


  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018
  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018

Copyright ©2007-2024 ANTPEDIA, All Rights Reserved