轴承的失效原因

2022-07-15 11:01:25, 北京专业 北京华欧世纪光电技术有限公司


       一、磨损

  在力的作用下,两个相互接触的金属表面相对运动产生摩擦,形成摩擦副。磨擦引起金属消耗或产生残余变形,使金属表面的形状、尺寸、组织或性能发生改变的现象称为磨损。

  磨损过程包含有两物体的相互作用、黏着、擦伤、塑性变形、化学反应等几个阶段。其中物体相互作用的程度对磨损的产生和发展起着重要的作用。

  磨损的基本形工有:疲劳磨损、黏着磨损、磨料(粒)磨损、微动磨损和腐蚀磨损等。

  产生磨损的主要原因:

  A、异物通过了密封不良的装置(或密封圈)进入了轴承内部。

  B、润滑不当。如润滑油中的杂质未过滤干净、润滑方式不良、润滑剂选用不当、润滑剂变质等。

  C、零件接触面上的材料颗粒脱离,

  D、锈蚀。如,由于轴承使用温度变化产生的冷凝水、润滑剂中添加剂的腐蚀性特质等原因形成的锈蚀。

  实际中多数磨损属于综合性磨损,预防对策应根据磨损的形式和机理分别采取措施。

  对于微动磨损,可以采用小游隙或过盈配合来减少使用过程中的微动磨损;可在套圈与滚动体之间采用稀润滑剂润滑或分别包装来减少运输过程的微动磨损;另外,轴承应放在无振动环境下保管,或将轴承内外圈隔离存放可以防止保管过程中产生的微动磨损。

  对于黏着磨损可以采取提高加工精度、增强润滑效果等措施来解决。

  对于磨料(粒)磨损,可以采用表面强化处理、表面润滑处理(如渗硫、磷化、表面软金属膜涂层等)、改善轴承密封结构、提高零件加工精度、保证润滑油过滤质量、减少制造和使用过程中对表面的损伤等方法来解决。

  对于腐蚀磨损,应减少轴承使用环境中腐蚀物质的侵入、对零件表面进行耐腐蚀处理或采用耐腐蚀材料制造产品等手段来解决。另外,还可以从产品结构设计和制造的角度进行改进,如提高零件的加工精度、减少磨削加工中产生的变质层、保证弹性流体动压润滑膜等实现预防磨损的目的。

  二、腐蚀

  金属与其所处环境中的物质发生化学反应或电化学反应变化所引起的消耗称为腐蚀。

  金属腐蚀的形式多种多样,就金属与周围介质作用的性质来分可以分为化学腐蚀和电化学腐蚀两类

  化学腐蚀是由于金属与周围介质之间的纯化学作用引起的。其过程中没有电流产生,但有腐蚀物质产生。这种物质一般都覆盖在金属表面上形成一层疏松膜.化学反应形成的腐蚀机理比较简单,主要是物体之间通过接触产生了化学反应,如金属在大气中与水产生的化学反应形成的腐蚀(又称为锈蚀)

  电化学腐蚀是由于金属与周围介质之间产生电化学作用引起的。其基本特点是在腐蚀的同时又有电流产生。电化学反应的腐蚀机理主要是微电池效应。

  就滚动轴承而言,产生腐蚀的主要原因有:

  A、轴承内部或润滑剂中含有水、碱、酸等腐蚀物质

  B、轴承在使用中的热量没有及时释放,冷却后形成水分

  C、密封装置失效

  D、轴承使用环境湿度大

  E、清洗、组装、存放不当

  腐蚀产生部位:零件各表面都会有。按程度有腐蚀斑点或腐蚀坑(洞),斑点和蚀坑一般呈零星或密集分布,形状不规则,深度不定,颜色有浅灰色、红褐色、灰褐色、黑色。

  对于金属材料来说,消除腐蚀是比较困难的,但可以减缓腐蚀的发生,防止轴承与腐蚀物质接触,可以通过合金化,表面改性等方法提高耐腐蚀能力,使得金属表面形成一层稳定致密与基体结合牢固的钝化膜。

  三、蠕动

  受旋转载荷的轴承套圈,如果选用间隙配合,在配合表面上会发生圆周方向的相对运动,使配合面上产生磨擦、磨损、发热、变形,造成轴承不正常损坏。这种配合面周向的微小滑动称为蠕动或爬行。

  蠕动形成的机理是当内圈与轴配合过盈量不足时,在内圈与轴之间的配合面上因受力产生弹性变形而出现微小的间隙,造成内圈与轴旋转时在圆周方向上的不同步、打滑,严重时在压力作用下发生金属滑移。在外圈与壳体也同样会出理类似的情况。

  蠕动形貌特征在一些方面具有腐蚀磨损和微动磨损的某些特征。蠕变在形成过程中也有一些非常细小的磨损颗粒脱落并立即局部氧化,生成一种类似铁锈的腐蚀物。其区别主要根据它们的位置和分布来判断,如果零件没有受到腐蚀又出现了褐色锈斑,锈斑的周围常常围绕着一圈碾光区,出现的部位又在轴承的配合表面上,那么可能就是蠕动。发生蠕动的配合面上,或出现镜面状的光亮色,或暗淡色,或咬合状,蠕动部位与零件原表面有明显区别。

  在轴承的端面由于轴向压紧力不足。或悬臂轴频繁挠曲,运转一定时间后也会出现蠕动的特征。

  产生蠕动的主要原因是内,外圈与轴或轴承座的配合过盈量不足,或载荷方向发生了变化。

  预防的措施:采用过盈配合并适当提高过盈量,在采用间隙配合的场合的场合可用黏结剂将两个配合面固定或沿轴(或轴承座)的轴向方向将轴承紧固。

  四、 烧伤

  轴承零件在使用中受到异常高温的影响,又得不到及时冷却,使零件表面组织产生高温回火或二次淬火的现象称为烧伤。

  烧伤产生的主要原因是润滑不良、预载荷过大、游隙选择不当、轴承配置不当、滚道表面接触不良、应力过大等因素所致。如:

  A、在轴向游动轴承中,如果外圈配合的过紧,不能在外壳孔中移动;

  B、轴承工作中运转温度升高,轴的热膨胀引起很大的轴向力,而轴承又无法轴向移动时;

  C、由于润滑不充分,或润滑剂选用不合理、质量问题、老化和变质等;

  D、内外圈运转温度差大,加上游隙选择不当,外圈膨胀小内圈大呈过盈导致轴承温度急剧升高;

  E、轴承承受的载荷过大和载荷分布均匀,形成应力集中;

  F、零件表面加工粗糙,造成接触不良或油膜形成困难。

  烧伤的形貌特征可以根据零件表面的颜色不同来判断。轴承在使用中由于润滑剂、温度、腐蚀等原因。零件表面会发生变化,颜色主要有淡黄色、黄色、棕红色、紫蓝色及蓝黑色等,其中淡黄色、黄色、棕红色属于变色,若出现紫蓝色或蓝黑色的为烧伤。烧伤容易造成零件表面硬度下降或出现微裂纹。

  烧伤产生的部位主要发生在零件的各接触表面上,如圆锥滚子轴承的挡边工作面、滚子端面、应力集中的滚表面等。

  烧伤的预防可根据烧伤产生的原因有针对性地采取措施。如正确选用轴承结构和配置、避免轴了砂承受过大的载荷、安装时采用正确的安装方式防止应力集中、保证润滑效果等。

  五、 电蚀

  电蚀是由电流放电引起,致使轴承零件表面出现电击的伤痕,此种损伤称为电蚀。在两零件接触面间一般存在一层油膜,该油膜一定有的绝缘作用,当有电流通过轴承内部时,在两面三刀零件接触表面形成电压差,当电压差高到足以击穿绝缘层时就会在两零件接触表面处产生火区放电,击穿油膜放电,产生高温,造成局部表面的熔融,形成弧凹状或沟蚀。受到电蚀的零件,其金属表面被局部加热和熔化,在放大镜下观察损伤区域一般呈现斑点、凹坑、密集的小坑,有金属熔融现象,电蚀坑呈现火山喷口状。电蚀会使零件的材料硬度下降,并加快磨损发生速度,也会诱发疲劳剥落。

  预防电蚀的措施是在焊接或其他带电体与轴承接触时加强轴承的绝缘或接地保护,防止电荷的聚集并形成高的电位差,避免放电现象产生。防止电流与轴承接触。

  六、裂纹和缺损

  当轴承零件所承受的应力超出材料的断裂极限应力时,其内部或表面便发生断裂和局部断裂,这种使材料出现不连续或断裂的现象称为裂纹。

  在材料表面或表层下有一种貌似毛发的细微裂纹称为发纹。当发纹扩展到一定程度,使得部分材料完全脱离零件基体的现象称为断裂。

  裂纹一般呈线状,方向不定,有一定长度和深(宽)度,有尖锐的根部和边缘。裂纹有内部裂纹和表面裂纹之分,也有肉眼可见和不可见两种形式,对于肉眼不可见裂纹需要采用无损检测的方法进行观察。发纹一般呈细线状,方向沿钢材轧制方向断续分布,有一定长度和深度,有时单条有时数条出现。

  裂纹产生的原因较为复杂,影响因素很多,如原材料、锻造、冲压折叠、热处理、磨削、局部过大的应力等。发纹形成的原因是钢材在冶炼过程中产生的气泡或夹杂,经轧制变形后存在于材料表层。对于肉眼不可见裂纹需要采用无损检测的方法进行观察。

  裂纹的预防措施主要有,在制造方面应控制原材料缺陷如非金属夹杂、表面夹渣、折叠、显微孔隙、缩孔、气泡等。控制加工应力如热处理淬火时产生的内应力(热应力和组织应力)、磨削应力、冲压应力等。在使用方面注意轴承安装过程中的非正常敲(撞)击以及安装不良造成的局部应力过大等。另外,还要保证润滑,增强密封效果,控制外部杂质流入,避免轴承与腐蚀性物质接触等。

  七、保持架损坏

  当滚动体进入或离开承载区域时,保持架将受到带有一定冲击性质的拉(压)应力作用,尤其是滚子轴承的滚子产生倾斜时所受到的应力会更大。在这种应力的反复作用下,保持架的兜孔、过梁、铆钉会出现变形、磨损、疲劳,甚至断裂现象。另外,不正确的安装方式也会损坏保持架。保持架相对套圈的强度一般较弱(尤其是冲压保持架),如果安装不得当,将安装力直接施加在保持架上,很容易造成保持架变形。冲压保持架制造过程中产生的应力过大也是造成保持架损坏的原因之一。

  防止保持架损坏的措施可以从设计、制造、安装方面考虑。保持架在运转中受到的拉(压)应力是无法避免的。但提高保持架的强度可通过适当增加保持架过梁(铆钉)强度来解决。滚子产生倾斜可以通过提高制造和安装质量来解决。改善润滑条件有助于减少磨损。对冲压保持架制造过程中产生的应力可采用振动光饰等方法支除或减少应力。

  八、尺寸变化

  轴承运转一定时间以后,会出现游隙减小或增大的现象。通过对零件尺寸检测可以发现轴承内、外圈或滚动体直径方向的尺寸发生了变化(增大或减小),影响轴承的正常旋转精度。若没有了游隙,会出现摩擦磨损加剧、工作温度上升、甚至“卡死”等现象。若游隙变大,会出现振动或噪声增大、旋转精度降低、应力集中等情况。轴承内径增大还很可能出现“甩圈”现象。

  轴承零件在热处理过程中,保留了一定数量的残佘奥氏体,而奥氏体是一种不稳定相,随着时间或温度的变化,奥氏体将逐步转变为较稳定的马氏体组织,由于马氏体组织的体积大于奥氏体组织,因此,在转变过程中零件的体积将发生涨大。而马氏体组织自身也会产生分解,马氏体分解的结果会出现尺寸收缩的现象。轴承工作温度高对奥氏体的转变和马氏体的分解有促进作用。还有一种情况,零件在内应力释放过程中也会引起尺寸的改变。

  从预防或控制零件尺寸稳定性的角度考虑,可以在轴承零件热处理时对不稳定的残余奥氏体组织进行稳定化处理。另外,在使用中应保证轴承的使用温度低于轴承允许的工作温度,以防止尺寸出现较大的变化。

  十、使用不当引起的损坏

  轴承使用不当引起的损坏在轴承失效中占有很大的比例。轴承使用不当涉及轴承选型、轴承配置、轴承支承结构、配合、安装、润滑、密封、维护保养等诸多方面。轴承失效与使用不当密不可分。

  十一、其他损伤

  A、变色

  变色是由于轴承在运转过程中因发热引起的表面颜色变化。另外,在温度作用下润滑剂中的部分化学物质、磨损的金属粉末等杂质会黏附在零件表面上也会引起轴承零件颜色变化,这种变色又称污斑。表面颜色一般呈淡黄色、黄色、茶色、棕红色、紫蓝色及蓝黑色等,发热引起的变色一般没有深度。对于使用中的轴承若出现深度变色如紫蓝色或蓝黑色的则有可能形成了烧伤。零件腐蚀也会引起变色,但这类变色有一定深度。

  轴承零件在运转过程中,因摩擦会产生大量的热,若润滑不充分或散热条件差,热量得不到及时的冷却或扩散,热量的聚积使轴承温度很快升高,温度升高会使附着在轴承零件表面的油膜产生氧化现象,形成一种浅褐色的氧化制,沉积附着在轴承的表面上。但这种变色并不影响轴承的使用,所以允许存生。当轴承因安装不当(如安装倾斜)或润滑不良等原因使轴承处于一种极不正常的工作状态,引起温度的急速上升,此时轴承的局部温度有可能超过轴承零件的回火温度,甚至更高,并产生严重的变色如蓝黑色或紫蓝色,形成烧伤现象,这种情况的变色轴承就不能再继续使用了。



关于华欧

北京华欧世纪光电技术有限公司是布鲁克公司(Bruker),芬兰应力技术有限公司(Stresstech Oy)中国区域合作战略伙伴。随着时代的发展,作为专业检测分析仪器供应商,我们追求专业、精确、便携、效率等专业技术支持和完善的售后服务。

一、北京华欧世纪是布鲁克(Bruker)手持式光谱仪在合金、矿石、土壤环保等行业授权中国代理商和售后服务中心。

二、北京华欧世纪是芬兰(Stresstech Oy)X射线应力仪和磨削烧伤仪中国地区独家代理商,几十年致力于为中国客户提供最先进的无损检测设备和优质的售后服务。

公司致力于品牌经营,追求卓越。更多详细资讯敬请浏览公司网站:http://www.volwin.cn

免责声明:本公众号所载文章为本公众号原创或根据网络搜集编辑整理,文章版权归原作者所有。


  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018
  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018

Copyright ©2007-2024 ANTPEDIA, All Rights Reserved