纳米颗粒、脂质体的超滤问题,看进来…

2021-09-01 18:45:30, 赛多利斯 德国赛多利斯集团


一转眼,又到了开学季,送走了七八月份的酷暑,马上是秋高气爽的凉风习习,正是读书学习的好时节!所谓吾生也有涯,而知也无涯,小赛就及时地为广大研发小伙伴们送来了真正的干货福利,本期我们就来聊聊药物的递送载体——纳米颗粒、脂质体的超滤问题

受到“魔弹”理念启发,1908年Paul Ehrlich在1908年首次从理论角度描述了“纳米载体”上的靶向药物1。如今,一百多年过去了,纳米载体已经成了生物医药和生物技术领域中炙手可热的研究工具,这些特殊的纳米材料可以在药物靶向递送中作为活性成分的载体(纳米材料,囊泡或是胶束)2,3,4,5,与传统药物相比较,更为高效而且毒性更小6。除了传统药物递送之外,纳米颗粒也常常用于核磁共振,干细胞治疗或是量子点光学成像7,8,9

一般在水介质中制备纳米颗粒悬液或是囊泡时包括三个步骤:组装纳米载体、纯化和浓缩。而纯化和浓缩步骤均会涉及到超滤的方法。而小赛提供的Vivaspin®或Vivaflow®超滤产品组合涵盖体积范围0.1mL-5L,齐全的截留分子量和膜材质选择,可以满足不同要求的应用,比如纳米载体合成后缓冲液置换,脱盐和洗涤10,11、清除可溶性化合物12,13,14和聚集体15。并且,通过超滤进行的纯化和浓缩可以克服分子排阻色谱方法造成的稀释和透析方法后期需要浓缩以及高成本和耗时问题,同时,浓缩和纯化也可以同时进行16

福利插播!

赛多利斯七年磨一剑推出的
低吸附RC超滤管

目前正在进行上市试用活动

名额有限,有需求的小伙伴
快来申请试用吧!

申请试用

下表就给大家概述了采用超滤方法对不同种类的纳米载体进行纯化和浓缩的文献,并提供了有关使用哪些超滤产品和截留分子量的指南,快快收藏起来吧!

表1总结了使用赛多利斯Vivaspin®或Vivaflow®的纳米载体超滤应用示例:

点击查看表1大图

表2列出了用于每种纳米载体超滤应用的赛多利斯设备和典型MWCO示例:

点击查看表2大图



-参考文献-(滑动查看)

(1)Strebhardt, K. & Ullrich, A.:Paul Ehrlich’s magic bullet concept: 100 years of progress. 8, 473–480 (2008).

(2)Jakoby, J., Beuschlein, F., Mentz, S., Hantel, C. & Süss, R.: Liposomal doxorubicin for active targeting: Surface modification of the nanocarrier evaluated in vitro and in vivo – challenges and prospects. Oncotarget 6, (2015).

(3)Klermund, L., Poschenrieder, S. T. & Castiglione, K.: Simple surface functionalization of polymersomes using non-antibacterial peptide anchors. J. Nanobiotechnology 14, 48 (2016).

(4)Mulder, W. J. M. et al.:Molecular imaging of macrophages in atherosclerotic plaques using bimodal PEG-micelles. Magn. Reson. Med. 58, 1164–1170 (2007).

(5)Murthy, S. K.:Nanoparticles in modern medicine: state of the art and future challenges. Int. J. Nanomedicine 2, 129–41 (2007).

(6)Voigt, R. & Fahr, A.:Pharmazeutische Technologie für Studium und Beruf. Deutscher Apotheker Verlag, 10th Edition (2010).

(7)Unterweger, H. et al.:Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery. Int J Nanomedicine 9, 3659–3676 (2014).

(8)Park, W. et al.:Multi-modal transfection agent based on monodisperse magnetic nanoparticles for stem cell gene delivery and tracking. Biomaterials 35, 7239–7247 (2014).

(9)Chalmers, N. I. et al.:Use of quantum dot luminescent probes to achieve single-cell resolution of human oral bacteria in biofilms. Appl. Environ. Microbiol. 73, 630–636 (2007).

(10)Hoffman, L. W., Andersson, G. G., Sharma, A., Clarke, S.R. & Voelcker, N. H.:New insights into the structure of PAMAM dendrimer | gold nanoparticle nanocomposites. Langmuir 27, 6759–6767 (2011).

(11)Rademacher, T. & Williams, P.:Nanoparticle-peptide compositions. (2014).(12)Allard, E. & Larpent, C.:Core-shell type dually fluorescent polymer nanoparticles for ratiometric pH-sensing. J. Polym. Sci. Part A Polym. Chem. 46, 6206–6213 (2008).

(13)Prach, M., Stone, V. & Proudfoot, L.:Zinc oxide nanoparticles and monocytes: Impact of size, charge and solubility on activation status. Toxicol. Appl. Pharmacol. 266, 19–26 (2013).

(14)Zhang, Y. et al.:Therapeutic surfactant-stripped frozen micelles. Nat Commun 7, 11649 (2016).

(15)Klasson, A. et al.:Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Contrast Media Mol. Imaging 3, 106–111 (2008).

(16)Simonoska Crcarevska, M. et al.:Definition of formulation design space, in vitro bioactivity and in vivo biodistribution for hydrophilic drug loaded PLGA/PEO-PPO-PEO nanoparticles using OFAT experiments. Eur. J. Pharm. Sci. 49, 65–80 (2013).

(17)Boda, S. K. et al.:Cytotoxicity of Ultrasmall Gold Nanoparticles on Planktonic and Biofilm Encapsulated Gram-Positive Staphylococci. Small 11, 3183–3193 (2015).

(18)Schäffler, M. et al.:Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials 35, 3455–3466 (2014).

(19)Arosio, D. et al.:Effective targeting of DC-sign by α-fucosylamide functionalized gold nanoparticles. Bioconjug. Chem. 25, 2244–2251 (2014).

(20)Miladi, I. et al.:Biodistribution of ultra small gadolinium-based nanoparticles as theranostic agent: application to brain tumors. J. Biomater. Appl. 28, 385–94 (2013).

(21)Faure, A. C. et al.:Control of the in vivo biodistribution of hybrid nanoparticles with different poly(ethylene glycol) coatings. Small 5, 2565–2575 (2009).

(22)Benita, S., Debotton, N. & Goldstein, D.: Nanoparticles for Targeted Delivery of Active Agent. (2008).

(23)Tukulula, M. et al.:Curdlan-conjugated PLGA nanoparticles possess macrophage stimulant activity and drug delivery capabilities. Pharm. Res. 32, 2713–2726 (2015).

(24)Ernsting, M. J., Tang, W. L., MacCallum, N. W. & Li, S. D.:Preclinical pharmacokinetic, biodistribution, and anti-cancer efficacy studies of a docetaxel- carboxymethylcellulose nanoparticle in mouse models. Biomaterials 33, 1445–1454 (2012).

(25)Geelen, T., Paulis, L. E., Coolen, B. F., Nicolay, K. & Strijkers, G. J.:Passive targeting of lipid-based nanoparticles to mouse cardiac ischemia-reperfusion injury. Contrast Media Mol. Imaging 8, 117–126 (2013).

(26)Neves, A. R., Queiroz, J. F. & Reis, S.:Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. J. Nanobiotechnology 14, 27 (2016).

(27)Bogomolny, E. et al.:Analysis of bacteria-derived outer membrane vesicles using tunable resistive pulse sensing. Prog. Biomed. Opt. Imaging – Proc. SPIE 9338, 4–9 (2015).

(28)Blenkiron, C. et al.:Uropathogenic Escherichia coli releases extracellular vesicles that are associated with RNA. PLoS One  11, 1–16 (2016).

(29)Twu, O. et al.:Trichomonas vaginalis Exosomes Deliver Cargo to Host Cells and Mediate Host:Parasite Interactions. PLoS Pathog. 9, 22–24 (2013).

(30)Tong, T. T., Mörgelin, M., Forsgren, A. & Riesbeck, K.: Haemophilus influenzae Survival during Complement- Mediated Attacks Is Promoted by Moraxella catarrhalis Outer Membrane Vesicles. J. Infect. Dis. 195, 1661–1670 (2007).

(31)Prado, J. M. D., Antoranz, J. R. C., Barroeta, M. Á. E., Barroeta, B. E. & Diaz, M. C.:Liposomal formulations. (2009).

(32)Achilli, E. et al.:Preparation of protein nanoparticle by dynamic aggregation and ionizing-induced crosslinking. Colloids Surfaces A Physicochem. Eng. Asp. 486, 161–171 (2015).



  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018
  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018

Copyright ©2007-2024 ANTPEDIA, All Rights Reserved