Quantum Design中国用户科研成果快报(2022年第八期)

2022-11-23 10:11:15, Dr. Sun QUANTUM量子科学仪器贸易(北京)有限公司





Quantum Design中国用户科研成果快报(2022年第8期)



《Quantum Design中国用户科研成果快报》是由Quantum Design中国定期汇总Quantum Design中国用户(包括综合物性测量PPMS、全新一代磁学测量系统MPMS3用户等)在众多研究领域的近期科研成果,为大家的相关科学研究提供参考。





本期文献目录:



1. Magnetic Skyrmionic Bubbles at Room Temperature and Sign Reversal of the Topological Hall Effect in a Layered Ferromagnet Cr0.87Te. ACS Nano (2022)  中科院物理所 王文洪.

2. Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy. Nat Commun (2022) 华中科技大学 常海欣.

3. Plastic/Ductile Bulk 2D van der Waals Single-Crystalline SnSe2 for Flexible Thermoelectrics. Adv Sci (Weinh) (2022)  中科院硅酸盐所 陈立东.

4. Adjustable core-sheath architecture of polyaniline-decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding. Advanced Composites and Hybrid Materials (2022)  浙江大学 秦发祥.

5. Gadolinium oxyorthogermanate Gd2GeO5: An efficient solid refrigerant material for magnetic cryocoolers. Materials Today Physics (2022)  中科院物理所 龙有文.

6. Magnetic glassy martensite induced reversible magnetocaloric effect in Heusler alloys. Acta Materialia (2022) 西安交通大学 杨森.

7. Electric field-controlled reversible high-temperature perpendicular magnetic anisotropy in cobaltate–manganite heterostructures. Journal of Materials Chemistry C (2022)  山西师范大学 许小红.

8. Tannin-bridged magnetic responsive multifunctional hydrogel for enhanced wound healing by mechanical stimulation-induced early vascularization. Journal of Materials Chemistry B (2022) 中科院应用化学所 章培标.

9. Construction of magnetic drug delivery system and its potential application in tumor theranostics. Biomed Pharmacother (2022) 北京大学 侯仰龙.

10. Dispersionless orbital excitations in (Li,Fe)OHFeSe superconductors. npj Quantum Materials (2022) 中科院物理所 董晓莉.

11. The evolution of ferroelectricity and ferromagnetism in epitaxial and freestanding SrTiO3-σ thin films. Ceramics International (2022)  山东大学 颜世申.

12. Magnetoelectric and Magnetostrictive Effects in Scheelite-Type HoCrO4. Inorg Chem (2022) 中科院物理所 龙有文.

13. High-Pressure Synthesis and Physical Properties of a Spinel Compound FeAl2S4. Inorg Chem (2022)  中科院物理所 靳长青.

14. Peculiarity of topological Hall effect in Mn2Sb0.9Bi0.1 ferrimagnet. Applied Physics Letters (2022) 浙江理工大学 马胜灿.

15. Enhancement of torque efficiency and spin Hall angle driven collaboratively by orbital torque and spin–orbit torque. Applied Physics Letters (2022)  山西师范大学 许小红.

16. Unconventional magneto-transport properties of the layered antiferromagnet Fe1/3NbS2. Applied Physics Letters (2022) 中科大 陆亚林.

17. Unified understanding of the first-order nature of the transition in TbCo2. Physical Review B (2022)  西安交通大学 杨森.

18. Magnetization tunable Weyl states in EuB6. Physical Review B (2022) 上海科技大学 郭艳峰.

19. Hybridized propagating spin waves in a CoFeB/IrMn bilayer. Physical Review B (2022)  物理2区 中科院物理所 韩秀峰.

20. Anomalous spin dynamics in a two-dimensional magnet induced by anisotropic critical fluctuations. Physical Review B (2022) 中科院物理所 王文洪.

21. Rapidly quenched heavy rare earth-based ternary Lu-Fe-B alloys: Phase evolution and hard magnetic properties. Materials Today Communications (2022) 华南理工大学 刘仲武.

22. Exploiting a pronounced photo-magnetic effect over the rational design of facile core–shell ferrowmagnet. Materials Letters (2022) 西安交通大学 杨森.

23. Role of divalent Co2+ and trivalent Tb3+ incorporation in ZnO nanocrystals: Structural, optical, photoluminescence properties and enhanced ferromagnetism. Physica B: Condensed Matter (2022) 西安交通大学 杨森.

24. Superconductivity in non-centrosymmetric ZrNiAl and HfRhSn-type compounds. J Phys Condens Matter (2022) 浙江大学 袁辉球.




中科院物理所 王文洪等

Magnetic Skyrmionic Bubbles at Room Temperature and Sign Reversal of the Topological Hall Effect in a Layered Ferromagnet Cr0.87Te. ACS Nano (2022)  


摘要

磁skyrmions等具有拓扑保护自旋结构的材料在自旋电子学领域具有重要应用前景。在本研究中,原位洛伦兹透射电子显微镜直接观测到层状铁磁体Cr0.87Te单晶中的布洛赫型磁skyrmions气泡。当施加面外磁场,由于磁偶极相互作用与单轴易轴各向异性之间的竞争,可以在包含室温的较宽温度范围内观察到手性随机的纳米级磁泡。此外,适当场冷操作可实现零磁场下的高密度和稳定skyrmionic气泡。本文还观察和讨论了霍尔效应和诱导拓扑霍尔效应的符号反转。作为准二维材料,含有磁skyrmions的二元碲化铬有望在大气环境下的低维skyrmion基自旋电子器件中具有广泛的应用前景。


PPMS Resistivity + MPMS

The magnetic properties were characterized by a superconducting quantum interference device (SQUID, Quantum Design MPMS XL7) with the reciprocating sample option. The longitudinal resistivity ρxx and Hall resistivity ρxy were measured simultaneously by a conventional six-probe method on a physical property measurement system (PPMS, Quantum Design).



华中科技大学 常海欣等

Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy. Nat Commun (2022)


摘要

二维范德华(2D vdW)铁磁晶体缺乏室温以上强本征铁磁性和较大垂直磁各向异性(PMA) ,严重阻碍了其在下一代低功率磁电子器件和自旋电子学器件中的实际应用。本文报道了一种vdW本征铁磁晶体Fe3GaTe2,具有2D vdW中最高记录的居里温度(Tc~350-380 K)、室温下高饱和磁矩(40.11 emu/g)、大PMA能量密度(~4.79 × 105 J/m3)和大反常霍尔角(3%)。如此大的室温PMA优于广泛使用的铁磁薄膜如CoFeB,比已知的2D vdW本征铁磁晶体高一个量级。基于Fe3GaTe2纳米片实现了室温下厚度和角度依赖的反常霍尔器件和直接磁畴成像。这项工作为室温2D铁磁、电控2D铁磁性提供了途径,并促进了2D vdw集成自旋电子器件的实际应用。


PPMS VSM & Resistivity

The ferromagnetic properties of Fe3GaTe2 bulk crystals were measured by a physical property measurement system (PPMS DynaCool, Quantum Design, USA) equipped with a vibrating sample magnetometer (VSM). The electrical transport properties were measured in a physical property measurement system (PPMS, DynaCool, Quantum Design) with a four-terminal configuration using silver electrodes. 


中科院硅酸盐所 陈立东等

Plastic/Ductile Bulk 2D van der Waals Single-Crystalline SnSe2 for Flexible Thermoelectrics. Adv Sci (Weinh) (2022) 


摘要

最近发现的柔软/塑性无机半导体为柔性热电开辟了一条新的道路。然而,与经典的脆性无机热电材料相比,当前柔软/塑性无机半导体的功率因数通常较低(低于5 µW cm-1 K-2),这极大地限制了柔性热电材料的输出功率。本文报道了在二维范德华单晶SnSe2中发现了大塑性和高功率因数。SnSe2晶体在室温下表现出较大的塑性应变,可以变形成各种形状而不开裂,这很好地体现在其固有的大变形系数上。SnSe2作为一种半导体,掺杂少量的卤素元素,可实现电输运特性的大范围调控。掺Br的塑性单晶SnSe2在375K时,功率因子高达10.8 µW cm-1 K-2,是目前报道的柔性无机和有机热电材料中最高值。二维vdW单晶SnSe2结合了良好的塑性、优良的功率因数、以及低成本和无毒等优势,有望实现高功率密度的柔性热电应用。


PPMS Resistivity & TTO

The electrical conductivity (𝜎), Seebeck coefficient (S), and the thermal conductivity (𝜅) were measured from 10 to 375 K by Physical Property Measurement System (PPMS, Quantum Design, USA). 


浙江大学 秦发祥等

Adjustable core-sheath architecture of polyaniline-decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding. Advanced Composites and HybridMaterials (2022) 






摘要

本研究在空心碳纳米纤维/聚苯胺(HCNFs/PANI)纳米复合材料中开发了具有负介电率和优异的电磁干扰屏蔽性能的可调核-鞘结构。并细致研究了PANI鞘厚度对HCNFs/PANI纳米复合材料电性能和电磁干扰性能的影响。结果表明,当HCNFs负载为50% wt%时,HCNFs/PANI纳米复合材料在X波段(8.0 ~ 12.4 GHz) 电导率最高22.71±0.10 S cm−1,电磁干扰屏蔽效能(SE)最大60 ~ 94 dB。HCNFs/PANI纳米复合材料具有优异的导电性、X波段可调介电共振以及在界面处的内部多重散射,这些特点都是其独特的EMI屏蔽性能的关键。这项工作为制备具有负介电常数的新型结构聚合物材料屏蔽电磁干扰提供了一种新途径。



PPMS Resistivity

The temperature-dependent resistivity was studied from 70 to 300 K using a standard four-point probe technique by a 9-Tesla Physical Properties Measurement System (PPMS, Quantum Design). The magnetoresistance was also measured on the PPMS at room temperature and the current was perpendicular to the sample.


中科院物理所 龙有文

Gadolinium oxyorthogermanate Gd2GeO5: An efficient solid refrigerant material for magnetic cryocoolers. Materials Today Physics (2022)  


摘要

本文通过磁化强度和比热测量,以及平均场和标度分析方法,报道了高效磁性制冷剂材料Gd2GeO5的磁相互作用、磁热效应和热力学参数。通过磁化强度依赖,估算该材料各向同性反铁磁交换耦合能量尺度为εex = JexS2 ≈ 2.6 K,与密度泛函 (DFT)导出结果相一致。Gd2GeO5在磁场变化8.9 T的情况下,表现出异常大的等温磁熵变化为0.36 J K−1 cm−3 (50.3 J K−1 kg−1)和相对冷却功率为4.34 J cm−3 (611.3 J kg−1) ,最高绝热温度改变可达22.2 K,这在无氦磁制冷机中是相当可观的。




PPMS HC & VSM

The commercial physical property measurement system (PPMS-9, Quantum Design) was used to collect the heat capacity data by thermal-relaxation method with Apiezon N-grease, at T = 1.9–40 K, the external fields are set to be 0, 2, and 8.9 T. Magnetic susceptibility data was collected using the liquid-helium free PPMS (PPMS®DynaCool™, Quantum Design) under a dc field of B = 10 mT in the 2–300 K temperature range. The magnetization isotherms are collected at a temperature range. 


西安交通大学 杨森等

Magnetic glassy martensite induced reversible magnetocaloric effect in Heusler alloys. Acta Materialia (2022) 


摘要

Heusler合金因其在场驱动磁结构相变过程中的巨大熵变,具有作为下一代固态制冷冷却介质的巨大潜力。利用Heusler合金进行高效冷却的关键障碍之一是磁热效应(MCE)的不可逆性。本工作利用Ni50Mn34In12Ga4 Heusler合金中未冻结典型自旋玻璃马氏体和铁磁性奥氏体之间相变过程,实现了室温附近具有大的等温热Q(约4.83-5.3 kJ/kg)的高度可逆的MCE,并通过间接和直接方法交叉检验。相场模拟结果表明,马氏体态自旋玻璃的存在可以使Heusler合金发生可逆场致磁结构相变,从而可以在不需要任何外部因素(如机械负载)情况下,有效规避大的MCE在强一阶相变过程的不可逆性。这种场致一阶相变的发生是由于磁矩与材料体积之间的负耦合引起的。这一研究表明,铁质玻璃态有望提高一阶相变过程的MCE的可逆性,并可能推动更多的Heusler合金在高效固态冷却中发挥作用。



PPMS VSM

IThe magnetic and spin glass transition behaviors of Ni50Mn34In12Gawere obtained through the magnetization-temperature (M-T), temperature dependent magnetization-field (M-H) and zero-field-cooling/ field- cooling (ZFC/FC) M-T measurements in a physical properties measurement system (PPMS, Quantum Design). In order to confirm the reliability of the above indirectly estimated results, a direct measurement of  ΔTtotal in Ga4 samples was carried out by employing a sophisticated sample puck in Physical Properties Measurement System (PPMS).


山西师范大学 许小红等

Electric field-controlled reversible high-temperature perpendicular magnetic anisotropy in cobaltate–manganite heterostructures. Journal of Materials Chemistry C (2022)  


摘要

强相关氧化物中的电场调控垂直磁各向异性(PMA)是实现超低能耗自旋电子器件的关键。在本文中,我们克服了La0.7Sr0.3MnO3 (LSMO)薄膜由于退磁效应易磁化轴位于面内的主要障碍。根据第一原理计算,我们在(001)取向SrTiO3衬底上合成了高质量SrCoO2.5 (SCO)/LSMO双层异质结构。与纯LSMO薄膜不同,磁性和磁输运测量表明双层异质结构中LSMO层表现出明显的PMA,并且PMA可持续至250K,高于SrRuO3薄膜。此外,x射线线性二色测量证实了双层结构中LSMO层的电子态为面外3z2–r2轨道。此外,通过控制离子-液体门驱动的B-SCO顶层相变,可实现LSMO层电场可逆调控高温PMA。这项工作不仅提供了一种电场可控的特殊可逆高温PMA材料,而且促进了氧化锰基电子元件的发展。



PPMS Resistivity & Rotator + MPMS

Magnetization as a function of temperature (M–T) and field (M–H) of all the samples was measured using a superconducting quantum interference device (SQUID) produced by the Quantum Design company. In addition, a physical property measurement system (PPMS) was used to measure the angular dependence of the magnetoresistance (AMR) of the samples, and the magnetic field was always perpendicular to the direction of the current. 



免责申明:本文汇总的所有文献,仅出于信息传递之目的,不保证所有信息的准确性和完整性,若文中任何文字或图片有知识版权,请联系我们第一时间删除。






微信号:QuantumDesign

扫码关注获取更多内容
















Quantum Design,源于科学,致力科学!



“阅读原文”即刻咨询相关产品!


  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018
  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018

Copyright ©2007-2024 ANTPEDIA, All Rights Reserved