干货!色谱质谱气相核心知识点

2020-09-15 17:45:27, 基泰生物 上海基泰生物科技有限公司


干货!色谱质谱气相核心知识点

高效液相色谱法

1.概述:液相色谱法不受样品挥发性和热稳定性及相对分子质量的限制,只要求把样品制成溶液即可,非常适合于分离生物大分子、离子型化合物,不稳定的天然产物以及其他各种高分子化合物等。此外,液相色谱的流动相不仅起到使样品沿色谱柱移动的作用,而且与固定相一样,与样品分子发生选择性的相互作用,这就为控制和改善分离条件提供了一个额外的可变因素。

2.液相色谱特点:

高压、高速、高效、高灵敏度、高沸点、热不稳定有机及生化试样的高效分离分析方法。 

3.高效液相相色谱仪的组成:

高压输液系统、进样系统、分离系统、检测系统、数据处理系统。

4.流动相使用前必须脱气:

常用的脱气方法有:

低压脱气法(电磁搅拌、水泵抽空,可同时加热或向溶剂吹氮气)、吹氦气脱气法和超声波脱气法等。

5.梯度洗脱:

用两种(或多种)不同极性的溶剂,在分离过程中按一定程序连续改变流动相中溶剂的配比和极性,通过流动相中极性的变化来改变被分离组分的分离因素,以提高分离效果。

6.高压梯度(内梯度):

特点是先加压后混合,将溶剂用高压泵增压以后输入色谱系统的梯度混合室,加以混合后送入色谱柱。

低压梯度(外梯度):

特点是先混合后加压。在常压下预先按一定的程序将溶剂混合后再用泵输入色谱柱。

7.进样系统要求:

良好的密封性,最小的死体积,最好的稳定性,进样时对色谱系统压力、流量影响较小。

8.分离系统:

色谱柱是实现分离的核心部件。由柱管和固定相组成。柱管为直型不锈钢管。一般色谱柱长5~30cm,内径4~5mm,凝胶色谱柱内径3~12mm,而制备色谱柱内径则可达25mm。一般淋洗溶剂在进入色谱分离柱之前,先通过前置柱。HPLC柱的填料颗粒粒径一般约为3~10m,填充常采用匀浆法,色谱柱的发展趋势是减小填料粒度和柱径以提高柱效。

9.检测系统:

作用——用来连续监测经色谱柱分离后的流出物的组成和含量变化的装置。紫外-可见吸收检测器、光电二极管阵列检测器、示差折光检测器、荧光检测器、电化学检测器。

10.高效液相色谱法对流动相的要求:

流动相不与色谱柱发生不可逆化学变化,以保持柱效或柱子的保留性质较长时间不变;对待测样品有足够的溶解能力;与所用检测器相匹配;粘度尽可能小,以获得较高的柱效;流动相纯度要高,价格便宜,毒性小。

11.高效液相色谱法的固定相的分类:

(1)按固定相承受压力分:

刚性固体:

以二氧化硅为基质,可承受较高压力,表面可键合各种功能官能团——键合固定相,是目前应用最广泛的固定相。

硬胶:

主要用于离子交换色谱法和凝胶色谱法中,由聚苯乙烯与二乙烯基苯交联而成,可承受的压力较低。

(2)按孔隙深度分:

表面多孔型:基体是球形玻璃珠,在玻璃表面涂覆一层多孔活性物质如硅胶、氧化铝、聚酰胺、离子交换树脂、分子筛等。

优点:适用于快速分离、填充均匀紧密、机械强度高、能承受高压,适于简单的样品及常规分析;

缺点:多孔层薄,进样量受限制;

全多孔型:

由硅胶颗粒聚集而成,比表面积大,柱容量大,小颗粒全孔型固定相孔洞浅传质速率快,柱效高,分离效果好,适合于复杂样品、痕量组分的分离分析,是目前HPLC中应用最广泛的固定相。

12.液固吸附色谱法原理:

是以固体吸附剂为固定相,吸附剂表面的活性中心具有吸附能力,试样分子被流动相带入柱内时,它将与流动相溶剂分子在吸附剂表面发生竞争吸附。分离过程是一个吸附-解吸的平衡过程。

13.液固吸附色谱法固定相:

通常是硅胶、氧化铝、活性炭等固体吸附剂,硅胶最常用;

流动相:极性大的试样需用极性强的洗脱剂,极性弱的试样宜用极性弱的洗脱剂。

应用:几何异构体分离和族分离,如农药异构体;石油中烷、烯、芳烃的分离。不适于强极性的离子型样品的分离,不适于分离同系物(因为,它对相对分子质量的选择性较小)。

14.液液分配色谱法原理:

根据物质在两种互不相溶(或部分互溶)的液体中溶解度的不同实现分离,分配系数较大的组分保留值也较大。

15.液液分配色谱法流动相:

流动相与固定液应尽量不互溶,或者二者的极性相差越大越好。根据流动相与固定相极性的差别程度,可将液液色谱分为正相分配色谱(流动相极性小于固定相极性,极性小的先流出,适于强极性和中等极性组分分离)和反相分配色谱(流动相极性大于固定相极性,极性大的先流出,适于非极性或弱极性组分分离)。

固定相:

由载体和固定液组成。常用的固定液有b,b’-氧二丙腈、聚乙二醇、聚酰胺、正十八烷、角鲨烷等。

应用:同系物组分的分离。

例:分离水解蛋白质所生成的各种氨基酸,分离脂肪酸同系物等。

16.化学键合固定相:

化学键合固定相是利用化学反应将有机分子键合到载体表面上,形成均一、牢固的单分子薄层而构成各种性能的固定相。

17.化学键合固定相的特点:

固定相不易流失,柱的稳定性和寿命较高;能耐受各种溶剂,可用于梯度洗脱;表面较为均一。没有液坑,传质快,柱效高;能键合不同基团以改变其选择性。例如,键合氰基、氨基等极性集团用于正相色谱法,键合离子交换基团用于离子色谱法,键合C2、C4、C6、C8、C18、C16、C18、C22烷基和苯基等非极性基团用于反相色谱法等。因此,它是HPLC较为理想的固定相。

18.离子交换色谱法原理:

离子交换色谱法的固定相是离子交换树脂,流动相是水溶液,它是利用待测样品中各组分离子与离子交换树脂的亲和力的不同而进行分离的。

19.离子交换色谱法流动相:

水的缓冲溶液,阴离子离子交换树脂作固定相,采用酸性水溶液;阳离子离子交换树脂作固定相,采用碱性水溶液;

应用:

离子及可离解的化合物,氨基酸、核酸等。

气相色谱法

1.气相色谱法(GC):

是以气体为流动相的色谱分析法。

2.气相色谱要求样品:

气化,不适用于大部分沸点高和热不稳定的化合物,对于腐蚀性能和反应性能较强的物质更难于分析。

大约有15%~20%的有机物能用气相色谱法进行分析。

3.气相色谱仪的组成:

气路系统、进样系统、分离系统、检测系统、温控系统、记录系统。

4.气路系统:

包括气源、净化器和载气流速控制;

常用的载气有:

氢气、氮气、氦气。

5.进样系统:

包括:

进样装置和气化室,气体进样器(六通阀):

试样首先充满定量管,切入后,载气携带定量管中的试样气体进入分离柱;

液体进样器:

不同规格的微量注射器,填充柱色谱常用10μL;毛细管色谱常用1μL;新型仪器带有全自动液体进样器,清洗、润冲、取样、进样、换样等过程自动完成,一次可放置数十个试样。

6.进样方式:

分流进样:

样品在汽化室内气化,蒸气大部分经分流管道放空,只有极小一部分被载气导入色谱柱;

不分流进样:

样品直接注入色谱的汽化室,经过挥发后全部引入色谱柱。

7.分离系统:

色谱柱:

填充柱(2~6mm直径,1~5m长),毛细管柱(0.1~0.5mm直径,几十米长)。

8.温控系统的作用:

温度是色谱分离条件的重要选择参数;

气化室、色谱柱恒温箱、检测器三部分在色谱仪操作时均需控制温度;

气化室:保证液体试样瞬间气化;

检测器:保证被分离后的组分通过时不在此冷凝;

色谱柱恒温箱:准确控制分离需要的温度。

9.检测系统:

作用:将色谱分离后的各组分的量转变成可测量的电信号;

指标:灵敏度、线性范围、响应速度、结构、通用性,通用型——对所有物质均有响应;专属型——对特定物质有高灵敏响应;

检测器类型:

浓度型检测器:

热导检测器、电子捕获检测器;

质量型检测器:

氢火焰离子化检测器、火焰光度检测器。

10.热导检测器的主要特点:

结构简单,稳定性好;

对无机物和有机物都有响应,不破坏样品;

灵敏度不高。

11.氢火焰离子化检测器的特点:

优点:

(1)典型的质量型检测器;

(2)通用型检测器(测含C有机物);

(3)氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速、死体积小、线性范围宽等特点;

(4)比热导检测器的灵敏度高出近3个数量级,检测下限可达10-12g·g-1;

缺点:

(1)对载气要求高;

(2)检测时要破坏样品,无法回收样品;

(3)不能检测永久性气体、水及四氯化碳等。。。

12.电子俘获检测器的特点:

对卤素、硫、磷、氮、氧有很强的响应;

灵敏度高,可用于痕量农药残留物的分析;

线性范围较窄。

13.火焰光度检测器(FPD):

是一种对含硫、磷化合物具有高选择性的检测器。含硫、磷化合物在富氢火焰中燃烧被打成有机碎片,发出不同波长的特征光谱。

14.固定相:

固体固定相:固体吸附剂;

液体固定相:由载体和固定液组成;聚合物固定相。

15.固体固定相:

一般为固体吸附剂,常用的有活性炭,硅胶,氧化铝和分子筛。

优点:

吸附容量大、热稳定性好、价格便宜;

缺点:

柱效低、吸附活性中心易中毒,使用前要进行活化。

应用:

主要用于惰性气体、H2、O2、N2、CO、CO2和CH4等一般气体和低沸点物质。

16.作为载体使用的物质应满足的条件:

表面有微孔结构,孔径均匀,比表面积大;

化学和物理惰性,即,与样品组分不起化学反应,无吸附作用或吸附很弱;

热稳定性好;

有一定的机械强度和浸润性,不易破碎;

具有一定的粒度和规则的形状,最好是球形。

17.对固定液的要求:

在使用温度下是液体,具有较低的挥发性;具有良好的热稳定性;对要分离的各组分应具有合适的分配系数;化学稳定性好,不与样品组分、载气、载体发生任何化学反应。

18.固定液的分类:

非极性固定液、中等极性固定液、强极性固定液、氢键型固定液。

19.非极性固定液:

主要是一些饱和烷烃和甲基硅油,它们与待测物质分子之间的作用力以色散力为主。组分按沸点由低到高顺序流出,若样品中兼有极性和非极性组分,则同沸点的极性组分先出峰。

常用的固定液有角鲨烷(异三十烷)、阿皮松等。。。适用于非极性和弱极性化合物的分析。

20.中等极性固定液:

由较大的烷基和少量的极性基团或可以诱导极化的基团组成,它们与待测物质分子间的作用力以色散力和诱导力为主,组分基本上按沸点顺序出峰,同沸点的非极性组分先出峰。常用的固定液有邻苯二甲酸二壬酯、聚酯等,适用于弱极性和中等极性化合物的分析。

21.强极性固定液:

含有较强的极性基团,它们与待测物质分子间作用力以静电力和诱导力为主,组分按极性由小到大的顺序出峰。常用的固定液有氧二丙腈等,适用于极性化合物的分析。

22.氢键型固定液:

是强极性固定液中特殊的一类,与待测物质分子间作用力以氢键力为主,组分依形成氢键的难易程度出峰,不易形成氢键的组分先出峰。常用的固定液有聚乙二醇、三乙醇胺等,适用于分析含F、N、O等的化合物。

23.固定液的选择:

①按极性相似原则选择:

极性相似,溶解度大,分配系数大,保留时间长;

②按官能团相似选择:

酯类——酯或聚酯类固定液;

醇类——聚乙二醇固定液。

③按主要差别选择:

各组分间沸点是主要差别——非极性固定液;极性为主要差别——极性固定液。

④选择混合固定液:

对于难分离的复杂样品,可选用两种或两种以上固定液。

24.聚合物固定相:

既可作为固体固定相,也可作为载体,又称高分子多孔微球。物质在其表面既存在吸附作用,又存在溶解作用。

(1)具有较大的比表面积,表面孔径均匀;

(2)对非极性及极性物质无有害的吸附活性,拖尾现象小,极性组分也能出对称峰;

(3)由于不存在液膜,无流失现象,热稳定性好;

(4)机械强度和耐腐蚀性较好,系均匀球形,在填充柱色谱中均匀性、重现性好,有助于减少涡流扩散。

25.载气种类的选择:

检测器的适应性,载气流速的大小。

26.柱温的选择:

(1)首先应使柱温控制在固定液的最高使用温度(超过该温度固定液易流失)和最低使用温度(低于此温度固定液以固体形式存在)范围之内。

(2)提高柱温,可以改善传质阻力,有利于提高柱效,缩短分析时间,但降低了容量因子和选择性,不利于分离。一般的原则是:在使最难分离的组分尽可能分离的前提下,尽量采用较低的柱温,但以保留时间适宜,峰形不拖尾为度。

(3)柱温一般选择在接近或略低于组分平均沸点时的温度。

(4)组分复杂,沸程宽的试样,采用程序升温。

27.载体和固定液含量的选择:

配比:

固定液在载体上的涂渍量,一般指的是固定液与担体的百分比,填充柱的配比通常在5%~25%之间。

配比越低,担体上形成的液膜越薄,传质阻力越小,柱效越高,分析速度也越快。配比较低时,固定相的负载量低,允许的进样量较小。分析工作中通常倾向于使用较低的配比。

28.进样条件的选择:

进样量应控制在柱容量允许范围及检测器线性检测范围之内,进样要求动作快、时间短,汽化室一般较柱温高30~70°C。

29.提高色谱分离能力的途径:

(1)塔板理论:

增加柱长,减小柱径,即增加柱子塔板数;

(2)速率理论:

减小组分在柱中的涡流扩散和传质阻力,可降低塔板高度。

30.毛细管色谱柱的结构特点:

(1) 不装填料阻力小,长度可达百米的毛细管柱,管径0.2mm;

(2)气流单途径通过柱子,消除了组分在柱中的涡流扩散;

(3)固定液直接涂在管壁上,总柱内壁面积较大,涂层很薄,则气相和液相传质阻力大大降低。

(4)毛细管色谱柱柱效高达每米3000~4000块理论塔板,一支长度100米的毛细管柱,总的理论塔板数可达104~106。

31.毛细管色谱具有以下优点:

(1)分离效率高:

比填充柱高10~100倍;

(2)分析速度快:

用毛细管色谱分析比用填充柱色谱速度;

(3)色谱峰窄、峰形对称,较多采用程序升温方式;

(4)灵敏度高,一般采用氢焰检测器。

(5)涡流扩散为零。

32.毛细管色谱的类型:

(1)涂壁毛细管柱:

将固定液直接涂敷在管内壁上。柱制作相对简单,但柱制备的重现性差、寿命短。

(2)多孔层毛细管柱:

在管壁上涂敷一层多孔性吸附剂固体微粒,构成毛细管气固色谱。

(3)载体涂渍毛细管柱:

将非常细的担体微粒粘接在管壁上,再涂固定液。柱效较涂壁毛细管柱高。

(4)化学键合或交联毛细管柱:

将固定液通过化学反应键合在管壁上或交联在一起。使柱效和柱寿命进一

质谱法

1.质谱法定义:

是将待测物质置于离子源中电离形成带电离子,让离子加速并通过磁场或电场后,离子将按质荷比(m/z)大小分离,形成质谱图。依据质谱线的位置和质谱线的相对强度建立的分析方法称为质谱法。

2.质谱的作用:

准确测定物质的分子量;

质谱法是唯一可以确定分子式的方法;

根据碎片特征进行化合物的结构分析。

3.质谱分析的基本原理:

质谱法是利用电磁学原理,将待测样品分子解离成具有不同质量的离子,然后按其质荷比(m/z)的大小依次排列收集成质谱。根据质谱中的分子离子峰(M+)可以获得样品分子的相对分子质量信息;根据各离子峰(分子离子峰、同位素离子峰、碎片离子峰、亚稳离子峰、重排离子峰等)及其相对强度和氮数规则,可以确定化合物的分子式;根据各离子峰及物质化学键的断裂规律可以进行定性分析和结构分析;根据组分质谱峰的峰高与浓度间的线性关系可以进行定量分析。

4.质谱分析的过程:

(1)进样,化合物通过汽化引入电离室;

(2)离子化,在电离室,组分分子被一束加速电子碰撞,撞击使分子电离形成正离子;

(3)离子也可因撞击强烈而形成碎片离子;

(4)荷正电离子被加速电压V加速,产生一定的速度v,与质量、电荷及加速电压有关;

(5)加速正离子进入一个强度为B的磁场(质量分析器),发生偏转。

5.质谱仪的组成:

真空系统、进样系统、离子源或电离室、质量分析器、离子检测器。

6.真空系统作用:

是减少离子碰撞损失,若真空度低:大量氧会烧坏离子源的灯丝;会使本底增高,干扰质谱图;引起额外的离子-分子反应,改变裂解模型,使质谱解释复杂化;干扰离子源中电子束的正常调节;用作加速离子的几千伏高压会引起放电等。

7.进样系统目的:

高效重复地将样品引入到离子源中并且不能造成真空度的降低;间歇式进样系统——气体及低沸点、易挥发的液体;直接探针进样——高沸点的液体、固体;色谱进样系统——有机化合物。

8.离子源或电离室:

作用是使试样中的原子、分子电离成离子,其性能影响质谱仪的灵敏度和分辨率本领。

电子电离源的特点:

电离电压:

70eV;加一小磁场增加电离几率;EI源电离效率高,碎片离子多,结构信息丰富,有标准化合物质谱库;结构简单,操作方便;样品在气态下电离,不能汽化的样品不能分析,主要用于气-质联用仪;有些样品得不到分子离子。

9.化学电离源特点:

电离能小,质谱峰数少,谱图简单;最强峰为(M+1)+准分子离子峰;不适用难挥发试样。

10.快原子轰击源:

高能量的Xe原子轰击涂在靶上的样品,溅射出离子流。本法适合于高极性、大分子量、低蒸汽压、热稳定性差的样品,FAB一般用作磁式质谱的离子源。

基泰生物

www.genstech.com.cn

400-068-0868

听说转发文章

会给你带来好运


  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018
  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018

Copyright ©2007-2024 ANTPEDIA, All Rights Reserved