【科普】Metallography 金相学 —如何显示金属和合金的微观结构特征【下】

2019-02-25 14:06:02 徕卡显微系统(上海)贸易有限公司


金相学即研究所有类型的金属合金的微观结构。其可更准确地定义为观察和确定金属合金中化学和原子结构、构成部分的空间分布、夹杂物或相的科学准则。广义来说,这些相同的原则可应用于任何材料的特性描述中。


不只有明视场

光学显微镜已使用了数十年,用于深入观察材料的微观结构。

明视场(BF)照明在金相分析中为最常用的照明技术。在入射明视场中,光路来自于光源,穿过物镜透镜,反射在标本表面上,并通过物镜返回,且最终照射至目镜或照像机用于观察。由于大量入射光反射至物镜透镜上,平面上产生一个明亮的背景,而当入射光分散时并以各种角度反射或甚至部分被吸收,则在非平面上显得较暗,如裂纹、细孔、腐蚀的晶界或以明显反射率为特征,如表面上的沉淀物及第二相夹杂物。


暗视场(DF)鲜为人知,但却是有效的照明技术。暗视场照明的光路通过物镜的外空心环,以入射角高角度照射在标本上,反射在表面上,再通过物镜透镜内部,并最终到达目镜或照像机。照明类型导致了平面出现黑暗,因为绝大部分以高入射角反射的光并未通过物镜透镜内部。对于偶尔不具有平坦特点的平面的样品 – 裂纹、细孔以及腐蚀的晶界等 – 暗视场图像相对于非平面特点显示了一个黑暗背景与明亮区域,并发射更多的光至物镜上。

明视场:只有直射光照射在样品表面,且其中有被吸收或反射。图像的质量参数为亮度、分辨率、对比及景深。

暗视场: 仅折射、衍射或反射的光照射在样品表面上。暗视场是适用于具有结构表面的所有样品并可在分辨率极限以下观察结构。表面结构可在黑暗背景下显得明亮。


微分干涉对比(DIC),也被称为诺马尔斯基对比,有助于观察标本表面的细小的高度差,因此可增强对比度特征。微分干涉对比使用沃拉斯顿棱镜以及偏光器和分析仪,其传动轴彼此垂直(相交成90°)。由棱镜分割的两条光波经标本表面反射之后进行干涉,呈现为可见的高度差以及变化的颜色和纹理。


在大多数情况下,入射光显微镜提供大部分所需的信息,但在某些情况下,对于特定的聚合物和复合材料,透射光显微镜(用于透明材料)及污渍或染料的使用可观察物体的微观结构,而当使用标准的散装样品制备及正常的入射照明时,该物体的微观结构无法观察。

由于许多热固性材料对常见的金相腐蚀剂产生惰性,样品的微观结构通常可利用传输的偏正光进行最佳的观察,以增强离散特征的折射率差异。

偏振:由光波及任何数量的振动方向构成的自然光。偏振滤镜仅可允许与传输方向平行的振动光波进入。相交成 90° 的两个偏振镜产生最大的消光(黑暗)。若在偏振镜之间的样品改变光的振动方向,则将出现双折射特性的颜色。

微分干涉对比(DIC): 微分干涉对比可观察高度和相位差。沃拉斯顿棱镜将偏振光分化成普通和特别的光波。这些振动光波呈直角相交,以不同的速率传播并相互分开。这将导致样品表面呈三维图像显示,虽然无法从该图像上获取真正的地形信息。

偏振光:由光波及任何数量的振动方向构成的自然光。 偏振滤镜仅可允许与传输方向平行的振动光波进入。相交成90° 的两个偏振镜产生最大的消光(黑暗)。 若在偏振镜之间的样品改变光的振动方向,则将出现双折射特性的颜色。


生活丰富多彩

微观结构的自然色彩通常在金相应用中非常有限,但当利用某些光学方法时,色彩却可反应出有用的信息,如偏振光或微分干涉对比,或样品制备方法,如色彩蚀刻。

偏光显微镜对于检查非立方晶体结构金属非常有用,例如钛、铍、铀和锆。遗憾的是,主要的商用合金(铁、铜和铝)对偏振光并不敏感,所以色彩或色调蚀刻提供了额外的方法,可显示并辨别微观结构的特征。

树枝状结构有色颗粒

色彩(色调)蚀刻一般使用化学(通过浸泡在溶液中)或电化学方式(浸泡在存在电极的溶液中并施加电)进行,并在标本表面产生薄膜,这通常取决于物体特征。薄膜与入射光相互作用并通过干涉产生颜色,其可通过正常的明视场照明观察,但可利用偏振光和相位延迟(拉姆达[ λ]或波片)极大地增强。此外,热着色或气相沉积是用于创造干涉膜的另一种方法。


在钢合金中,所谓的“第二相”构成部分可以通过蚀刻选择性地着色,其为辨别并分别对其进行量化提供了方法。通过蚀刻辨别钢当中的铁素体和碳化物是一种常见的方法。


干涉膜的增长可以在样品表面产生晶体方向特征,如颗粒。对于使用标准试剂(以干扰晶界)进行蚀刻的合金产生了不完整的网络(晶界),并且因此可防止数字图像重建,由于不同的颗粒方向,微观结构的颜色编码可对待执行的颗粒大小进行分析。


定量优于定性

定量金相的根源在于光学显微镜的应用,以研究金属合金微观结构。

材料科学家们必须解决的第一个基本问题是:

  • 合金中某些特征的尺寸是多少以及存在多少类型的特征?

  • 合金中存在多少特殊构成部分?

球状石墨铸铁

(HC PL Fluotar 10x 物镜,明视场)

多年来,图表评级和视觉比较的使用是能够以半定量陈述来解释此类问题的唯一途经。如今,现代电动及电脑显微镜和图像分析系统为涵盖国际或行业标准的多数自动化评价和评估方法提供快速而准确的方法。

测量通常在一系列二维图像上进行,并可分为两大组:用于量化离散微粒的尺寸、形状及分布(特征测量)以及有关基体组织的一类(场测量)。


第一组的部分例子是钢的夹杂物含量、铸铁中的石墨分类以及热喷涂层或烧结零件中的孔隙度评估。

视场测量的常见应用是通过截取或平面测量的方法测定平均晶粒尺寸以及通过相位分析评估微观结构构成部分的体积分数。利用图像分析软件,可以检测到单场、量化并以图形方法呈现的多个相位。


微观又宏观

宏观检查技术通常使用在常规质量控制以及故障分析或研究中。通常这些技术的前奏是进行显微镜观察,但有时刻单独将其视为验收或拒绝的标准。

钢的表面淬火

宏观浸蚀检验或许是可提供最丰富信息的工具,并在材料加工或形成的许多阶段中广泛用于质量检验。随着立体显微镜以及多种照明技术的应用,宏观浸蚀通过显示材料微观结构中均匀性的缺乏,以提供组件均匀度的整体视图。例如:

  • 由固化或工作(增长模式、流线以及条带等)产生的宏观结构模式

  • 溶深焊接和热影响区

  • 由于固化或工作产生的物理中断(孔隙和裂缝)

  • 化学和电化学表面改性(脱碳、氧化、腐蚀和污染)

  • 由于钢合金或形态淬火的不符常规行为导致的硬化深度(表面硬化)

  • 由于不当研磨或加工导致的损害

  • 由于过热或疲劳导致的热效应

本文经Leica Microsystems Science Lab许可翻译。若需引用或转载,请联系我们,注明源自徕卡显微系统,并保留徕卡显微系统、Science Lab及原作者相关版权信息。

完整版金相学介绍

请关注徕卡显微系统官方微信

点击徕卡学院

进入工业材料学院

查看具体内容


  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018
  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018

Copyright ©2007-2024 ANTPEDIA, All Rights Reserved