应用笔记 | Upd2/胰岛素调节能量感知神经回路

2023-05-12 17:57:55, 徕卡显微系统 徕卡显微系统(上海)贸易有限公司


弗雷德·哈钦森癌症研究中心的研究人员利用Aivia软件分析果蝇脂肪感知神经元,阐明了瘦素/Upd2和胰岛素在能量感知神经回路中的相反作用。

准确和持续监测能量储备可以维持神经张力并驱动对于无脊椎动物和脊椎动物生存至关重要的行为决策。直到最近,脂肪感知神经元接收和反应脂肪储存信息的精确机制还不为人所知。研究人员Ava Brent和Akhila Rajan证明了脂联素Upd2诱导神经元结构改变,使其在营养过剩时释放胰岛素,并且胰岛素本身通过对同一神经回路的负反馈恢复神经张力。


分析与脂肪储存相关的突触结构变化

对于Brent和Rajan的研究,成像和分割神经元是至关重要的,因为他们需要分析神经元形态和结构的微小变化。他们专注于轴突末端的突触前结构(称为boutons)的扩张。使用Aivia软件,他们开发了一种图像分割协议来分析boutons,从而使他们能够系统地监测神经元结构。


“Aivia的特点在于团队可帮助像我们这样试图做出不同事物的用户。在他们的帮助下,我们能够开发出Aivia工具,将我们使用基础形态报告生成的复杂成像数据编码成对象。然后,这些对象使用属性(如数量、体积、表面积和强度)进行描述。”Rajan说道。

图1. Drosophila大脑中PI区域STAT表达神经元中Syt-GFP标记的boutons的分割分析(根据[1]的许可重现)。


一个稳态回路

由此产生的Aivia图像分析工具旨在应用于大量成像数据集,使Brent和Rajan能够同时计算bouton数量和分析结构变化。拥有他们的Aivia工具,他们开始研究在果蝇的脂肪感知神经回路中管理不同信号的提示。


Brent和Rajan喂食高糖饮食来模拟养分过剩,监测Upd2和胰岛素水平以及突触小结的数量。他们的Aivia图像分割工具揭示了Upd2依赖性的突触小结数量下降,因此突触接触减少。这种突触接触的减少释放了对胰岛素分泌的“夹子”,从而使激素能够在营养过剩的情况下被释放。


进一步分析他们的图像,Brent和Rajan还确定了涉及细胞骨架重塑的几个基因的表达发生了改变,包括Aru和Bsg,这表明Upd2依赖性的突触小结改变是由于肌动蛋白细胞骨架重组造成的


令人惊讶的是,在高糖饮食5天后,突触小结数量恢复到基线水平,这表明存在负反馈机制。出乎意料的是,研究人员发现胰岛素本身对神经回路产生了负反馈作用

图2. 抑制反馈促进Syt-GFP标记的boutons增加以响应胰岛素信号传导(经[1]许可转载)

现在,研究人员已经知道了神经回路调节的具体方式,他们想确定重要的脂肪感受激素首先如何到达其靶神经元。


“我们正在探究这些脂肪激素如何穿过血脑屏障,”Rajan说。“为了做到这一点,我们将再次依赖于成像脂肪激素转运,并希望应用我们之前使用Aivia的技术和工具。”


参考文献:

【1】Brent, AE, and A Rajan (2020). Insulin and Leptin/Upd2 exert opposing influences on synapse number in fat-sensing neurons. Cell Metabolism, 32:5, 786-800.E7


相关产品

AI图像分析软件 Aivia


徕卡显微咨询电话:400-630-7761

关于徕卡显微系统


徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。


徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。



  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018
  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018

Copyright ©2007-2023 ANTPEDIA, All Rights Reserved