美国达特茅斯学院生物系何冰研究组诚聘专职科研人员

2022-09-22 20:48:06


更多招聘信息请关注BioArt人才账号


BioArt人才

美国达特茅斯学院生物系何冰研究组

招聘启事

 

美国达特茅斯学院生物系何冰实验室诚聘对胚胎组织形态发生和定量生物学研究感兴趣的博士后,研究生和实验员。何冰实验室研究胚胎发育中组织形成的分子和力学机制。以经典的遗传学模型果蝇作为主要模式生物,实验室结合双光子显微技术等高时空分辨率活体荧光成像技术和定量图像分析,遗传学/光遗传学、细胞生物学,生物物理学和计算机建模来研究转录调控网络和细胞信号如何决定细胞的生物物理行为以形成特定的胚胎组织结构。
达特茅斯生物系和毗邻的盖塞尔医学院共同形成了一个一流的跨学科和高度合作的生命科学研究环境。何冰实验室所在的生命科学中心拥有众多现代化的科研设施和平台,支持分子生命科学各类分支的前沿研究。作为常春藤盟校之一,达特茅斯学院是一所科研设备先进、教学理念优异的研究型综合大学。学校位于风景秀丽的新英格兰康涅狄格河谷地区,周围环绕着平和而充满活力的社区,有着无与伦比的工作和生活环境。
实验室主页:https://sites.dartmouth.edu/hebing/
实验室主要研究方向:
上皮组织折叠机制:在动物胚胎发育过程中,上皮组织折叠介导了上皮组织从简单的平面二维结构向更复杂的三维结构的转变。这一过程对于发育早期原肠胚形成以及后期组织和器官形成起到至关重要的作用。在发育过程中,上皮组织折叠受到基因调控网络和细胞生化信号的严格调控。另外,上皮折叠本身也是一个力学过程。通过特定基因表达和细胞信号转导,上皮细胞产生机械作用力来改变细胞的形状和位置,从而造成组织层面的形态变化。果蝇早期胚胎发育阶段的原肠胚形成过程提供了探索上皮折叠机制的理想模型。通过研究果蝇原肠胚形成,研究组致力于探索细胞极性、胞内运输和细胞骨架之间的相互作用以及它们在上皮折叠力学过程中的调控功能。
上皮组织形成机制:上皮组织的形成和形态变化在胚胎发育过程中起到了至关重要的作用。在果蝇早期胚胎发育阶段,胚胎上皮组织的形成是通过细胞化过程来完成。细胞化过程是一个戏剧性的细胞膜增长过程,同时伴随胞质分裂以及上皮细胞极性和细胞连接的形成。研究组以果蝇细胞化过程为模型来研究上皮组织形成的调控机制,尤其是早期胚胎合子基因组激活对于皮组织形成的调控作用。

职位理想人选:对细胞和发育生物学研究以及定量生物学方法有浓厚兴趣。 有光学显微镜和定量图像分析经验者优先。


薪酬待遇:聘用制,提供具有竞争力的年薪,福利待遇按单位规定执行。


申请方式:

1. 如果您对课题组的博士后或实验员的职位感兴趣,请投递个人简历等应聘材料;

2. 如果您对进入课题组就读研究生感兴趣,请通过达特茅斯分子和细胞生物学 (MCB) 博士项目申请:https://graduate.dartmouth.edu/mcb/。


投递简历请选择:细胞生态海河实验室-程涛课题组和饶书权课题组

简历投递方式(可选任一):

1. 扫描二维码投递简历;

2. 点击【阅读原文】投递简历;

3. 点击链接投递简历:https://jinshuju.net/f/ZqXwZt

英文版招聘启事

 

Postdoc and Research Assistant Positions in Tissue Morphogenesis at Dartmouth

Dr. Bing He’s Laboratory at Dartmouth College, New Hampshire is seeking talented postdoctoral scholars and research assistants interested in tissue morphogenesis and quantitative biology. The He Lab studies the molecular and mechanical mechanisms of tissue formation in embryonic development. We useDrosophila, the fruit fly, as our model system because of the array of tools available and its accessibility for live-imaging analyses. By combining cutting-edge imaging techniques with genetics/optogenetics, cell biology and biophysics, our research seeks to address how transcriptional regulatory networks and cell signaling determine the biophysical behaviors of cells that give rise to specific tissue architectures.

Lab Webpage: https://sites.dartmouth.edu/hebing/

Current research topics:

Epithelial folding: Epithelial folding provides a fundamental tissue construction mechanism in embryonic development that converts flat epithelial sheets into convoluted, 3-dimentional structures. Failure in this process can lead to severe congenital birth defects, such as neural tube defects. Using Drosophila gastrulation as the model, we investigate tissue folding mechanisms across subcellular and multicellular scales by exploring the interplay between cell polarity, intracellular trafficking, cytoskeleton and tissue-level mechanics.

Formation of the primary epithelium: Drosophila cellularization is a special form of cleavage that establishes the primary epithelium in the early embryo during maternal-to-zygotic transition. Several important cellular processes occur coordinately during cellularization, including plasma membrane expansion, cytokinesis, and establishment of cell polarity and cell adhesion. We seek to understand how these processes are orchestrated by zygotic gene activities.

Location:The He lab is located in the state-of-the-art Life Sciences Center with access to many well-resourced research facilities that support cutting-edge research in the molecular life sciences (For further information, visit https://biology.dartmouth.edu). We are member of a cross-disciplinary, highly collaborative life sciences research community with a strong commitment to excellence in both research and training. Dartmouth College is a private Ivy League research university located in the rural Upper Valley region of New England, surrounded by vibrant and beautiful neighborhoods that offer an unparalleled quality of life.

Position Requirements: We are looking for candidates who have a strong interest in pursuing research in the field of cell and developmental biology using quantitative and interdisciplinary approaches. Experience with light microscopy and image analysis is preferred.

How to apply: Interested candidates should send a letter describing your interest in the position, CV, and names of three references to Dr. Bing He, Assistant Professor of Biological Sciences, Dartmouth College. 

Molecular and Cell Biology (MCB) Graduate Program: If you are interested in pursuing Ph.D. study in the He Lab, please apply to the MCB Graduate Program at Dartmouth: https://graduate.dartmouth.edu/mcb/


Selected Publications and Preprints:

1. Wei Chen, Victoria Bergstein, Bing He. (2022) PI 4-kinases promote cell surface expansion and facilitate tissue morphogenesis during Drosophila cellularization and gastrulation. Preprint: https://www.biorxiv.org/content/10.1101/2022.09.09.507384v1

2. Melisa A. Fuentes, Hayley N. Piper, Bing He. (2022) Dlg1 regulates subcellular distribution of non-muscle myosin II during Drosophila germband extension. Preprint: https://www.biorxiv.org/content/10.1101/2022.08.29.505652v1

3. Jiayang Chen, Bing He. (2022) Early zygotic gene product Dunk interacts with anillin to regulate Myosin II during Drosophila cleavage. Preprint: https://www.biorxiv.org/content/10.1101/2022.02.14.480462v1

4. Wei Chen, Bing He. (2022) Actomyosin activity-dependent apical targeting of Rab11 vesicles reinforces apical constriction. J Cell Biol. 221(6). doi: 10.1083/jcb.202103069.

5. Hanqing Guo, Michael Swan, Bing He. (2022) Optogenetic inhibition of actomyosin reveals mechanical bistability of the mesoderm epithelium during Drosophila mesoderm invagination. Elife 11:e69082. doi: 10.7554/eLife.69082.

6. Melisa Fuentes, Bing He. (2022) The cell polarity determinant Dlg1 facilitates epithelial invagination by promoting tissue-scale mechanical coordination. Development. 149(6):dev200468. doi: 10.1242/dev.200468.

7. Bing He*, Adam Martin, Eric Wieschaus. (2016) Flow-dependent myosin recruitment during Drosophilacellularization requires zygotic dunk activity. Development 143(13):2417-30. * Corresponding author.

8. Bing He, Konstantin Doubrovinski, Oleg Polyakov, Eric Wieschaus (2014) Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation. Nature 508(7496):392-6.

Full list of publications: https://sites.dartmouth.edu/hebing/publications/

课题组招聘广告请发送至:bioarthr@bioart.com.cn

制版人:viv



  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018
  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018

Copyright ©2007-2022 ANTPEDIA, All Rights Reserved