资料下载

超声波清洗机的频率与功率


        随着工业的发展,超声波清洗机所清洗的工件越来越精细,对工件清洁度的要求也越来越高,因此从清洗的效果及经济性考虑,如何正确选择超声波清洗的频率与功率显得至关重要,一般情况都需要从实验获取数据。

       这里有二个概念:功率和频率。在超声波精密清洗中,当一定频率的超声清洗后达不到清洁的效果时,如果工件上要去除的杂质颗粒较大,就可能是超声波功率不足,一般增加超声波功率就可解决该问题;但相反的如果工件上要去除的杂质颗粒非常小,那么无论功率怎么增大,都无法达到清洁的要求。

       原因在于:当液体流过工件表面时,会形成一层粘性膜。低频时一般该层粘性膜很厚,小颗粒就埋藏在里面,无论超声波的功率(强度)多大,空化气泡都无法与小颗粒接触,故无法把小颗粒彻底除去;而当超声波频率升高时,粘性膜的厚度就会减少,超声波产生的空化泡就可以接触到小颗粒,将它们从工件表面剥落。         所以,低频的超声波清理大颗粒杂质的效果很好,但清理小颗粒杂质效果就很差。相对而言,高频超声对清理小颗粒杂质就特别有效。 

DTA-1.jpg  

      为什么高频清洗能避免对工件的损伤呢?大家都知道超声波清洗的基本原理是基于液体的空化效应。事实上空化效应的强度直接跟频率有关,频率越高,空化气泡越小,空化强度越弱,且其减弱的程度非常大。举例说,如将25KHz时的空化强度比作1,40KHz时的空化强度则为1/8,到了80KHz时,空化强度就降到0.02。所以如果频率选择正确,超声波损伤工件的问题就不存在了。

       由此可见,超声空化阀值和超声波的频率有密切关系,频率越高,空化阀越高。换句话说,频率低,空化越容易产生,而且在低频情况下液体受到的压缩和稀疏作用有更长的时间间隔,使气泡在崩溃前能生长到较大的尺寸,增高空化强度,有利于清洗作用。所以低频超声波清洗适用于大部件表面或者污物和清洗件表面结合度高的场合。但易腐蚀清洗件表面,不适宜清洗表面光洁度高的部件,而且空化噪音大。40 KHZ左右的频率,在相同声强下,产生的空化泡数量比频率为20KHZ时多,穿透力较强,宜清洗表面形状复杂或有盲孔的工件,空化噪音较小,但空化强度较低,适合清洗污物与被清洗件表面结合力较弱的场合。



使用微信扫描此二维码,在手机上查看和分享