岛津企业管理(中国)有限公司/岛津(香港)有限公司
400-6699-1176666

分析测试百科网 认证会员,请放心拨打!

分析测试百科网 > 岛津 > 新闻动态 > AS专辑丨微区微束新技术助推嫦娥五号月壤研究
皇冠会员

诚信认证:

工商注册信息已核实!
为了庆祝岛津制作所创业140周年,岛津在“逐梦科学140载 厚积薄发 共创未来”......
 “十二五”期间,中国将把农村饮水安全工程作为社会主义新农村建设的重点内容之一,......
扫一扫即可访问手机版展台

AS专辑丨微区微束新技术助推嫦娥五号月壤研究

发布时间: 2022-03-11 14:49 来源:岛津企业管理(中国)有限公司/岛津(香港)有限公司

微区分析是目前各研究领域常用的研究方式,岛津可提供多维度的解决方案,部分解决方案如下:

 

岛津扫描探针显微镜SPM-Nanoa

★自动观察

★功能先进

★省时高效

 

岛津场发射电子探针EPMA-8050G

★优越的空间分辨率:二次电子图像分辨率3nm

★大束流更高灵敏度分析:加速电压30kV时可达3μA,特有的52.5°高X射线取出角设计,大幅提高测试灵敏度

★高分辨率分析:Johanson型全聚焦晶体,无像差

 

岛津Kratos全自动、多技术成像型X射线光电子能谱仪(XPS)Axis Supra+

★优秀的元素化学状态分析能力

★卓越的元素化学状态成像空间分辨率-1um

★自动化技术

 

岛津多功能X射线衍射仪XRD-7000

★高精度垂直测角仪

★高稳定性X射线发生器

X射线防护本质安全

★丰富的配

 

激光剥蚀-电感耦合等离子体质谱联用仪(LA-ICP-MS)

★原位元素成像分析 

★高灵敏度

ICP-MS软件直控LA产品

以下内容转载自公众号:Atomic Spectroscopy

2020年12月17日凌晨,中国嫦娥五号返回器在内蒙古四子王旗着陆,这是继美国阿波罗(Apollo)和前苏联月球号(Lunar)计划后,时隔44年人类再次从月球带回珍贵样品,举国欢腾,举世瞩目!

2021年7月12日,首批嫦娥五号月壤样品正式发放,拉开返回样品精细研究的序幕!截至目前,月壤样品已发放了三个批次,国内30多家科研单位共计获得44.8577克样品,正相继开展科学研究工作。

2021年10月8日,中国地质科学院在国际学术期刊《Science》上发布首个嫦娥五号月球样品研究成果。2021年10月19日,中国科学院发布首批嫦娥五号月球样品研究系列成果,3篇《Nature》论文当天同期上线!

科学引领,技术先行!嫦娥五号月壤研究成果的快速产出,既依赖于中国科学家对月球演化等前沿科学问题的精准把控,也得益于多种微区微束分析方法的精妙组合和应用。为助推中国嫦娥五号月壤研究,在《Atomic Spectroscopy》主编李献华院士提议和指导下,由杨蔚研究员、李金华研究员、李雄耀研究员和何永胜教授共同担任Guest Editors,以“Microanalytical Techniques for Extraterrestrial Samples”(地外样品微区微束分析技术)为主题,在AS上连续组织两期相关专辑(2022, Issue 43, No.1 和 No. 2),详细地论述这些先进的微区分析技术,并通过实例展示其在嫦娥五号月壤和陨石等珍贵地外样品研究中的潜力。

2022年2月25日正式出版的第一期“Microanalytical Techniques for Extraterrestrial Samples (Part I)” (www.at-spectrosc.com),包含 9篇Articles和1篇Review。

 

AS 封面:月壤及地外样品微区分析专辑(Part I)

01

光学成像方法具有非接触、快速、高精度等优点,一直是生物标本和矿物材料测试的主要工具之一。西安交通大学雷铭团队自2015年首次提出了高分辨全彩色三维光切片结构光照明显微系统,其凭借空间分辨率高、成像速度快、光毒性小、三维成像能力强等优点,迅速成为活体生物组织超分辨动态成像和结构观察中真彩色三维快速成像的有力工具,受到了国内外众多科研机构的广泛关注。在《Reconstructing the Color 3D Tomography of Lunar Samples(月球样品的彩色三维光学切片重建)》一文中,雷铭教授及其团队成员改进了高分辨彩色三维显微系统(专利号ZL202010061033.2),实现了对具有复杂突变结构样品的高动态彩色三维成像。利用系统特有的宽动态范围、低热损伤效应和高速三维成像能力,首次对模拟月壤和月球陨石NWA 11474标本进行了大视场彩色三维成像,获得了样品表面的高分辨彩色三维形貌(图1)。该技术为无损分析嫦娥五号月壤提供了一种新思路,有望成为进一步探究月球地质演化过程的新工具。

全文下载

https://doi.org/10.46770/AS.2022.009

 

1. 月球陨石NWA 11474的彩色光切片三维成像结果。(a)-(c)上视图、左视图和正视图;(d)三维形貌分布和沿直线处的高度曲线;(e)-(n)局部放大图及其三维形貌分布。

02

原子力显微镜(AFM)是一种观察微观表面形态的有力工具,还用于探测电、磁、范德华、粘附和化学相互作用。AFM是少数能够在微观尺度上测量颗粒粘附力的方法之一:通过将颗粒修饰至AFM探针针尖,可测量颗粒与界面接触时二者间的相互作用力,已广泛应用于微纳尺度颗粒与界面粘附特性研究中。受限于大气环境中气体吸附的干扰,传统AFM粘附力测量实际上得到的是颗粒-吸附气体-界面三者之间的粘附力,极大地限制了其在行星科学领域的应用,也阻碍我们正确认识无大气行星或小行星表面细粒风化物的粘附特性。在《An Improved Method of Adhesion Force Measurement by Atomic Force Microscopy (AFM) (一种改进的AFM测量粘附力的方法)》文章中,中国科学院地球化学研究所李雄耀团队提出了一种基于高真空AFM设备排除颗粒表面气体吸附物对其粘附特性影响的新技术(图2)。在保持颗粒物性不变的前提下,详细地探讨了环境压力与温度对颗粒表面吸附物的影响,在优化的温压条件(排除气体吸附物所需)下,模拟样品测量结果与理论模型预测值具有高度的一致性,表明该技术可准确测定无大气星体表面颗粒粘附力。该方法可应用于嫦娥五号月尘的粘附特性研究,为进一步认识月球表面尘埃环境提供关键数据支撑。

全文下载

https://doi.org/10.46770/AS.2022.011

 

2 排除吸附气体干扰后,在控温控压条件下使用AFM测量颗粒粘附力

03

原位微区X射线衍射技术(In-situ Micro-XRD)具有无损、准确、制样灵活和空间分辨率高等优点,非常适合珍贵地外样品(如月壤)的分析研究。现有对于月球陨石、阿波罗样品的研究和月球模拟场计算均表明,非晶态物质是月球表层土壤的重要组成部分。月壤中玻璃组分的成因及分布,对深入了解和认识月球的起源和演化、月表太阳风和微陨石轰击等作用具有重要意义。但其粒径细小、来源多样以及共生关系复杂等特点,目前仍没有很好的手段和方法可对其进行系统地研究。在《In-situ Micro-XRD Methods for Identifying Glass and Minerals in Extraterrestrial Samples(原位微区XRD鉴定地外样品中玻璃和矿物)》一文中,中国科学院广州地球化学研究所马灵涯团队基于Rigaku D/MAX RAPID-V微区衍射技术对包括月壤样品集合体、似单晶颗粒及制靶样品在内的多种形态的月壤样品(No. CE5C0000YJYX023 和 No. CE5C0000YJYX125)进行了原位分析,探究不同类型样品最佳的制样和测试方法(图3),并对大量测试结果进行归类分析和总结。发现在嫦娥五号月壤中非晶物质与辉石、长石等矿物广泛共生,且玻璃质以覆层或基质的形式充填于矿物碎屑之间。作者认为月壤样品中的玻璃可能是在月球经历的频繁和强烈的撞击事件中,由冲击变质熔融或蒸发沉积等过程产生。上述研究表明样品颗粒不同的有序度和玻璃含量,可作为推断撞击中心或火山喷发中心的证据之一。

全文下载 

https://doi.org/10.46770/AS.2022.016

 

3 两种微区衍射放样方法及其2D-1D衍射结果

04

电子探针显微分析(EPMA)可用于微小固体物质的原位化学组分分析,具有高空间分辨率(~1 μm)、快速、无损和基体效应小等优点。经过70年软硬件的蓬勃发展,EPMA已成为研究地球与行星物质组成最有效的微束分析技术之一。微量元素和铁价态分析是当前EPMA显微分析的两类国际前沿技术。在文章《High-Precision Measurement Of Trace Level Na, K, P, S, Cr, And Ni In Lunar Glass Using Electron Probe Microanalysis(电子探针高精度测试月球玻璃珠中微量Na、K、P、S、Cr和Ni)》中,中国科学院地质与地球物理研究所电子探针与扫描电镜实验室的陈意团队建立了EPMA测试月球玻璃珠微量Na、K、P、S、Cr和Ni的分析方法(图4)。在最佳测试条件下(加速电压20 kV、束流100 nA、束斑直径10 μm、线性背底模式、大晶体和多谱仪计数方式、总分析时间10 分钟等),获得了优异的分析性能:检测限降低至17-96 ppm (3σ)、分析精度优于10% (2σ)。该无损高分辨技术可同时获得月球玻璃珠样品中主量和部分微量元素含量,为嫦娥五号月球及地外样品的地球化学组成和演化研究提供高质量基础数据。

全文下载 

https://doi.org/10.46770/AS.2022.001

 

4 电子探针高精度测试月球玻璃珠成分的方法示意图

05

Fe3+/∑Fe分析是电子探针显微分析(EPMA)的另一项前沿技术,该技术与微量元素分析技术相对独立,需对同一矿物进行多次分析分别获得微量和价态信息。在中国科学院地质与地球物理研究所陈意团发表另一篇电子探针分析技术文章《Simultaneous In-Situ Determination Of Major, Trace Elements And Fe3+/∑Fe In Spinel Using EPMA(电子探针同步分析尖晶石主量、微量元素和Fe3+/∑Fe)》中,作者全面评估了七件尖晶石的成分均一性,并利用不同测试方法(EPMA、LA-ICP-MS、XRF和穆斯堡尔谱)对该套尖晶石标样进行主量、微量元素和Fe3+/ΣFe进行定值(图5)。在此基础上,研发了尖晶石微量元素(Zn、Co、Ni、Mn、V、Ti)高精度EPMA方法,该方法合理地提高加速电压和束流,延长测试时间,并对分光晶体的分配、峰值背景值的设定、峰位干扰校正以及标准物质的选用等方面进行了系统优化,将微量元素的检出限进一步降低至16-55 ppm (3σ),微量元素分析精度优于6% (1σ)。同时依据该套尖晶石标样的铁价态信息(Fe3+/ΣFe介于 0.073~0.271),利用二次标样校正法获得了未知尖晶石样品的Fe3+/ΣFe比值,其精度(±0.04,2σ)明显优于已有的文献报道。该方法可为月球、火星和小行星等地外样品和地球样品中的尖晶石提供高精度的化学成分信息(主量、部分微量和Fe3+/ΣFe比值),用于研究行星氧逸度、物质源区和岩浆演化等关键科学问题。

全文下载

https://doi.org/10.46770/AS.2022.002

 

 5 电子探针同步分析尖晶石主量、微量元素和Fe3+/∑Fe。a. 月壤颗粒的聚焦离子束(FIB)制样位置;b. np-Fe0的俄歇电子能谱图;c. FIB超薄片的扫描透射明场电子图像 ;d. 月壤颗粒中不同含铁相的电子能量损失谱图。

06

纳米级单质金属铁(nanophase iron particles, np-Fe0) 是太空风化作用的特征产物,对月球的反射光谱遥感探测具有重要影响。然而,对于np-Fe0的形成原因,当前的研究结果主要基于Apollo样品与少量月球角砾岩陨石,并归结于陨石、微陨石撞击引起的蒸发沉积作用以及可能的太阳风粒子辐射引起的溅射离子沉积作用。在中国科学院地球化学研究所李阳团队的一篇文章《In Situ Investigation Of The Valence States Of Iron-Bearing Phases In Chang’E-5 Lunar Soil Using FIB, AES, And TEM-EELS Techniques (应用FIB、AES和TEM-EELS联合技术原位测定嫦娥五号月球土壤中含铁相的价态)》中,作者分析和排除了地球环境对嫦娥五号月壤(No. CE5C0400YJFM00505)中含铁相的污染和氧化,并利用透射电子显微镜-电子能量损失谱仪对np-Fe0及其周围铁镁硅酸盐矿物与玻璃基质中Fe2+与Fe3+的纳米级尺度分布与赋存特征开展了深入分析,获得了np-Fe0歧化反应成因的初步证(图6)。该技术对np-Fe0成因机制,铁元素的微区地球化学行为以及氧化还原环境演变过程的研究具有重要意义,可广泛应用于月壤等地外样品以及传统地球样品的分析和研究中。

全文下载 

https://doi.org/10.46770/AS.2022.014

 

6. 应用FIB、AES和TEM-EELS联合技术原位测定嫦娥五号月球土壤中含铁相的价态。a. 月壤颗粒的聚焦离子束(FIB)制样位置;b. np-Fe0的俄歇电子能谱图;c. FIB超薄片的扫描透射明场电子图像 ;d. 月壤颗粒中不同含铁相的电子能量损失谱图

07

月球样品形成年龄(包括月球陨石和太空任务期间收集的月球样本)对确定地月系统的演化历史至关重要。采用微区分析技术测定富U矿物相(如斜锆石或磷灰石等)的U-Pb年龄是目前获得月球或其他地外样品年龄的主要手段,但大多数陨石样品是超镁铁质或镁铁质成分,富U矿物相在样品中稀少且微小。而地外样品中主要矿物相,如斜长石、辉石、钛铁矿或玻璃质等则可以考虑利用Rb-Sr放射性衰变体系获取其Rb-Sr等时线年龄。在In Situ Rb-Sr Dating Of Lunar Meteorites Using Laser Ablation MC-ICP-MS(激光剥蚀MC-ICP-MS原位Rb-Sr定年分析月球陨石样品)》一文中,中国地质大学(武汉)张文和胡兆初团队系统地研究了LA-MC-ICP-MS微区原位Rb-Sr测年技术用于月球陨石定年的可行性(图7)。实验结果表明斜长石、辉石、钛铁矿或玻璃质等主要矿物具有含量低且变化大的87Rb/86Sr比值,在古老陨石样品中(>1Ga)可以积累一定的放射性成因87Sr。所开发的LA-MC-ICP-MS技术可准确地识别出由87Rb衰变引起的87Sr/86Sr变化,并结合本课题组开发的数据处理技术(Iso-Compass)建立了样品剥蚀区域内87Rb/86Sr与87Sr/86Sr的线性关系,实现了低Rb/Sr样品的微区原位Rb-Sr等时线年龄测定。该方法应用于两块不同岩性的月球陨石(玄武质陨石NWA 10597和橄榄辉长岩NWA 6950)中的斜长石、辉石、钛铁矿和玻璃等矿物相年龄测定,所获得Rb-Sr等时线年龄(2984 ± 43 Ma for NWA 10597 和3149 ± 20 Ma for NWA 6950)与文献报道采用SIMS使用其他放射性测年体系的结果(2990-3032 Ma for NWA 10597 and 3210-3187 Ma for NWA 6950)相一致。该技术可为未来开展地外天体样品年代学研究提供新的技术手段。

全文下载 

https://doi.org/10.46770/AS.2022.007

 

7 激光剥蚀MC-ICP-MS原位Rb-Sr定年分析月球陨石样品

08

大型二次离子质谱(LG-SIMS)具有微米级高空间分辨率(~1 μm)、近无损剥蚀和高的质量分辨率(可达4万)等优越性能,被誉为微区地球化学分析界的“核武器”。二十年来中国的LG-SIMS分析技术发展迅速,在含U-Th矿物定年、稳定同位素及低含量挥发份等方面均达到了世界同类实验室的先进水平。在《SIMS Zircon Hydrogen Isotope And HO Content Analyses And Reference Material Development(二次离子质谱测定锆石氢同位素组成和水含量及标准物质开发)》一文中,中国科学院广州地球化学研究所夏小平团队报道了新开发的SIMS超低背景下锆石氢同位素和水含量同时测定技术,并新研制成功的国际上第一套锆石氢同位素参考物质(D15395和D15814)(图8)。该技术为研究地外样品的挥发份,尤其是水的含量和来源提供了新的研究手段。

全文下载 

https://doi.org/10.46770/AS.2022.006

 

8 锆石Temora 2的H2O含量与δD值的LG-SIMS测量结果。不确定度为±1SE(标准误差)

09

纳米离子探针(NanoSIMS)是具有极高空间分辨率的二次离子质谱仪,在橄榄石等样品的水含量分析中具有不可替代的优势。橄榄石是上地幔的主要组成矿物,对橄榄石中水含量的研究有助于理解行星演化的动力学过程。它属于名义无水矿物(水含量为ppm级),并且多发育成分环带(典型宽度为5~20μm),对橄榄石中水含量的研究有助于理解行星演化的动力学过程。因此,精准测定橄榄石中的水含量需要具有低本底和高空间分辨特征的原位分析方法。对于二次离子质谱而言,所采用的一次束流能量越低,得到的束斑尺寸越小,仪器的空间分辨率就越高;但是,获得的测试本底也越高。可想而知,同时保有低本底和高空间分辨具有极大的挑战性。以往的NanoSIMS研究可以满足低本底(<10 ppm)条件下10~30 μm的空间分辨。在《High-Spatial-Resolution Measurement of Water Content in Olivine Using NanoSIMS 50L(利用NanoSIMS 50L建立高空间分辨的橄榄石水含量分析方法)》一文中,中国科学院地质与地球物理研究所的郝佳龙和杨蔚团队利用CAMECA NanoSIMS 50L,将橄榄石水含量分析方法的空间分辨提高至6 μm(提高了~2倍)。该方法通过优化纳米离子探针的一次离子束参数和分析条件,测试了水含量为11.2~70.6 ppm的橄榄石标准样品(KLB-1、ICH-30和Mongok),并将San Carlos橄榄石作为本底监测标样,获得了~6 μm的空间分辨率和6±2 ppm的水含量本底(图9)。该方法是当前低本底(<10 ppm)水含量原位分析方法中的空间分辨率最优者,已应用于嫦娥五号月壤样品中橄榄石微细区域的水含量分析,并可借鉴于其他名义无水矿物的水含量分析中。

全文下载 

https://doi.org/10.46770/AS.2022.004

 

9 高空间分辨率低本底的橄榄石水含量NanoSIMS分析技术

10

同步辐射光具有超高亮度、高准直性和宽频谱等特性,被誉为认识微观世界的“人类神光”。经过60多年发展,同步辐射装置已历经三代,成为材料、信息、生命和地球科学等领域前沿科学研究强有力工具。在众多同步辐射X-射线技术中,扫描透射X-射线显微学(STXM)技术,因其高空间分辨率(10-30 nm)、高能量分辨率(<0.05 eV)和低辐射损伤等特点,可在常温、常压、冷冻或液态等多种测试条件下,对样品在纳米分辨率下开展二维和三维的形貌结构、化学成分(包括元素种类及价态鉴定)和磁学性质等分析,成为最具代表性的同步辐射线站技术,也是极富发展潜力的显微谱学分析技术。在《Scanning Transmission X-Ray Microscopy at the Canadian Light Source: Progress and Selected Applications in Geosciences(同步辐射扫描透射X-射线显微学最新进展及应用)》的综述文章中,加拿大国家光源(CLS)的王建博士和中国科学院地质与地球物理研究所李金华教授,以世界领先的第三代同步辐射光源CLS的STXM线站(加拿大)为例,首先给出了同步辐射STXM技术的工作原理和仪器配置(图10),重点介绍了该线站最新的冷冻STXM和扫描相干衍衬成像STXM技术,详细地综述了多种同步辐射STXM技术在复杂的地质微生物样品(趋磁细菌生物矿化和磁学)和地质样品(土壤微团聚体)研究中的应用实例和成果。两位作者还总结和讨论了第四代光源同步辐射STXM的技术发展趋势,并提出将同步辐射STXM技术用于嫦娥五号月壤样品精细化研究的预案。

全文下载 

https://doi.org/10.46770/AS.2022.008

 

10 同步辐射扫描透射X-射线显微镜工作原理及应用领域

嫦娥五号圆满完成了我国探月工程“绕、落、回”三步走战略的最后一步,使中国科学家第一次拥有属于自己的1731克地外天体返回样品,在行星科学发展史上具有里程碑意义的重大事件。月壤样品极其珍贵,多数为亚毫米和微米大小的颗粒。如何利用有限的珍贵样品获得尽可能多的基础数据,同时开展高效高质量的科学研究,对我国科研人员提出了巨大挑战,这也是获取重大原创成果的前提。

在未来十年,中国已经布局了嫦娥六号月球南极采样、小行星采样和火星采样等一系列重大任务。毫无疑问,随着嫦娥五号月壤样品研究的持续深入以及更多类型的地外天体样品被陆续带回,中国的行星科学将迎来新的时代。制定合理的科学目标,建立高效的工作流程,按照“先无损,后微损”、“先单颗粒,后微纳米尺度,最后原子水平”、“先侧重表面,后开展内部结构”的分析思路,将现有的多种显微学和显微谱学技术,在分析的时间节点上进行了排列组合,可对同一个样品获得不同尺度下多种信息,是开展珍贵地外天体样品研究的客观需求,也是未来行星科学发展的大趋势。

[主要参考文献]

1. Jin-Hua Li*, Wei Yang*, Xiong-Yao Li*, and Yong-Sheng He*, The Chang’e-5 Lunar Samples Stimulate the Development of Microanalysis Techniques, At. Spectrosc., 2022, 43, 1–5. https://doi.org/10.46770/AS.2022.010

2. X. C. Che, A. Nemchin*, D. Y. Liu*, T. Long, C. Wang, M. D. Norman, K. H. Joy, R. Tartese, J. Head, B. Jolliff, J. F. Snape, C. R. Neal, M. J. Whitehouse, C. Crow, G. Benedix, F. Jourdan, Z. Q. Yang, C. Yang, J. H. Liu, S. W. Xie, Z. M. Bao, R. L. Fan, D. Peng Li, Z. S. Li, and S. G. Webb, Science, 2021, 374, 887–890. https://doi.org/10.1126/science.abl7957

3. S. Hu*, H. C. He, J. L. Ji, Y. T. Lin*, H. J. Hui, M. Anand, R. Tartèse, Y. H. Yan, J. L. Hao, R. Y. Li, L. X. Gu, Q. Guo, H. Y. He, and Z. Y. Ouyang, Nature, 2021, 600, 49–53. https://doi.org/10.1038/s41586-021-04107-9

4. Q.-L. Li, Q. Zhou, Y. Liu, Z. Y. Xiao, Y. T. Lin, J.-H. Li, H.-X. Ma, G.-Q. Tang, S. Guo, X. Tang, J.-Y. Yuan, J. Li, F.-Y. Wu, Z. Y. Ouyang, C. L. Li*, and X.-H. Li*, Nature, 2021, 600, 54–58. https://doi.org/10.1038/s41586-021-04100-2

5. H.-C. Tian, H. Wang, Y. Chen, W. Yang*, Q. Zhou, C. Zhang, H.-L. Lin, C. Huang, S.-T. Wu, L.-H. Jia, L. Xu, D. Zhang, X.-G. Li, R. Chang, Y.-H. Yang, L.-W. Xie, D.-P. Zhang, G.-L. Zhang, S.-H. Yang, and F.-Y. Wu, Nature, 2021, 600, 59–63. https://doi.org/10.1038/s41586-021-04119-5

6. J.-H. Li*, Q.-L. Li, L. Zhao, J.-H. Zhang, X. Tang, L.-X. Gu, Q. Guo, H.-X. Ma, Q. Zhou, Y. Liu, P.-Y. Liu, H. Qiu, G. Li, L. Gu, S. Guo, C.-L. Li, X.-H. Li, F.-Y. Wu, and Y.-X. Pan, Geosci. Front., 2022, 13, 101367. https://doi.org/10.1016/j.gsf.2022.101367

 [本期原文]

Special  Issue: Microanalytical Techniques for Extraterrestrial Samples (Part I)

Atomic Spectroscopy, 2022, 43(1), 1-98.

www.at-spectrosc.com

Guest Editors

Wei Yang is a Professor at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS), operating a NanoSIMS laboratory. He received his B.S. (2001) and Ph.D. (2007) degrees in geochemistry from the University of Science and Technology of China. After completing his Ph.D., he came to IGGCAS for post-doctoral research and joined the comparative planetary science group as an Associate Professor in 2011. His main interest in the past decade was Mg isotope geochemistry and its application in tracing the deep carbon cycle. He is currently working on instrumentation developments on secondary ion mass spectrometry and its application in Earth and planetary sciences, the formation and evolution of the Moon based on the exploration data and returned samples of the Chinese Lunar Exploration Program. He has published over 70 peer-reviewed scientific papers in ISI-indexed journals.

Jin-Hua Li is a full professor of Biogeomagnetism and Geobiology at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGG-CAS). He received his B.S. degree in Biology from Northwest University (NWU, Xi’an city) in 2001, M.S. degree in Microbiology from Shandong University (SDU, Jinan city) in 2006, and completed Ph.D. in Solid Earth Geophysics from the IGG-CAS in 2010. He worked as postdoctoral research fellow at the IGG-CAS (2010-12) and the Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (Paris, France) (2012-14), associate professor from 2013 to 2016 and full professor after 2017 at the IGG-CAS. From 2019, he started to work as director of Electron Microscopy Lab at the IGG-CAS. His research focused on biomineralization and magnetism of magnetotactic bacteria, microbial biomineralization, experimental fossilization of microorganisms and biominerals, and the identification of microfossils (nano fossils) and fossil biominerals in ancient rocks, and the applications of microbes in bioremediation and biomimetics. He has extensive experience with high-resolution Micro X-ray Fluorescence (μXRF), electron-microscopy (SEM, TEM, FIB), Scanning Transmission X-ray Microscopy (STXM) at international light sources, and rock magnetism and microbiology. He published over 90 papers.

Xiong-Yao Li is a research professor of planetary science at the Institute of Geochemistry, Chinese Academy of Sciences (IGCAS) in Guiyang, China. He is the director of the Center for Lunar and Planetary Sciences, IGCAS. He completed his Ph.D. in cosmochemistry from the University of Chinese Academy of Sciences in 2006. His research focused on lunar surface environment, lunar soil properties and space weathering. He published over 100 papers in SCI journals.

Yong-Sheng He is a Professor at the Institute of Earth Sciences, China University of Geosciences, Beijing (CUGB), leading a group focusing on Fe, Ca and Mg isotope geochemistry. He received his B.S. (2005) and Ph.D. (2011) degrees in geochemistry from the University of Science and Technology of China. After completing his Ph.D., he came to CUGB for post-doctoral research and joined the Isotope Geochemistry Lab as a faculty in 2013. His main interest was petrogenesis of adakitic rocks and their implication on evolution of orogenic crust. He currently focuses on methodology developments on metal stable isotope geochemistry and its application in tracing key geological and planetary processes, e.g., deep carbon and oxygen cycles, changes in paleo-environment, and the formation and evolution of the Moon. He has published over 50 peer-reviewed scientific papers in ISI-indexed journals.

国际SCI期刊Atomic Spectroscopy (AS) 由Dr. Walter Slavin于1962年创办,2020年1月转至中国团队全权负责,由Atomic Spectroscopy Press Limited, Hongkong, P.R. China出版发行,2020年影响因子为2.04。AS密切关注原子光谱(AAS, AFS, ICP-OES, ICP-MS, GD-MS, TIMS, SIMS, AMS, LIBS, XRF, SEM-EDS, EPMA,NAA, SR-based techniques等)新方法及其在各学科领域中新应用、仪器/部件研发、元素同位素样品前处理技术、标准物质开发等。AS编委会由来自10多个国家的60余位知名学者组成,中国科学院地质地球所李献华院士担任主编,中国地质大学(武汉)郭伟教授任执行主编,厦门大学杭纬教授、中国地质大学(武汉)胡兆初教授、德国Justus Liebig University Giessen大学Michael Dürr教授任副主编。AS期刊主页: www.at-spectrosc.com。

本文内容非商业广告,仅供专业人士参考。




关于岛津


      岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理     商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进 的产品和更加满意的服务,为中国社会的进步贡献力量。

  更多信息请关注岛津公司网站www.shimadzu.com.cn/an/

  岛津官方微博地址http://weibo.com/chinashimadzu

岛津.jpg

标签:岛津,微区,嫦娥五号
相关产品
移动版: 资讯 直播 仪器谱

Copyright ©2007-2024 ANTPEDIA, All Rights Reserved

京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号