四国药典溶液颜色检查规定/中英双译

2022-03-27 16:52:06, 胤煌科技 上海胤煌科技有限公司


中国药典0901溶液颜色检查法

本法系将药物溶液的颜色与规定的标准比色液比较,或在规定的波长处测定其吸光度。

品种项下规定的“无色”系指供试品溶液的颜色相同于水或所用溶剂,“几乎无色”系指供试品溶液的颜色不深于相应色调0.5号标准比色液。


01


01

第一法




02

第二法 



03

第三法(色差计法)




美国药典溶液颜色检查规范<中英双译>


01

USP <631> COLOR AND ACHROMICITY呈色和消色


DEFINITION定义
  For the purposes of this chapter, color may be defined as the perception or subjective response by an observer to the objective stimulus of radiant energy in the visible spectrum extending over the range 400 nm to 700 nm in wavelength. Perceived color is a function of three variables: spectral properties of the object, both absorptive and reflective; spectral properties of the source of illumination; and visual characteristics of the observer.
  在本章中,颜色可定义为观察者对可见光谱中辐射能的客观刺激的感知或主观反应,辐射能的波长范围为400 nm至700 nm。感知颜色是三个变量的函数:物体的光谱特性,包括吸收和反射;光源的光谱特性;以及观察者的视觉特征。
  
  Two objects are said to have a color match for a particular source of illumination when an observer cannot detect a color difference. Where a pair of objects exhibit a color match for one source of illumination and not another, they constitute a metameric pair. Color matches of two objects occur for all sources of illumination if the absorption and reflectance spectra of the two objects are identical.
  当观察者无法检测到色差时,两个物体被称为具有特定光源的颜色匹配。当一对物体显示出对一个光源颜色匹配而不是对另一个光源的颜色匹配时,它们构成同色异谱对。如果两个物体的吸收光谱和反射光谱相同,则所有光源下的两个物体的颜色都会匹配。
  
  Achromicity or colorlessness is one extreme of any color scale for transmission of light. It implies the complete absence of color, and therefore the visible spectrum of the object lacks absorbances. For practical purposes, the observer in this case perceives little if any absorption taking place in the visible spectrum.
  消色或无色是光传输的任何色阶中的一个极端。这意味着完全没有颜色,因此物体的可见光谱缺乏吸光度。出于实际目的,在这种情况下,观察者几乎察觉不到可见光谱中发生的任何吸收。
  
COLOR ATTRIBUTES 颜色属性
  Because the sensation of color has both a subjective and an objective part, color cannot be described solely in spectrophotometric terms. The common attributes of color therefore cannot be given a one-to-one correspondence with spectral terminology.
  因为颜色的感觉既有主观的,也有客观的,所以颜色不能仅仅用分光光度法来描述。因此,颜色的共同属性不能与光谱术语一一对应。
  
  Three attributes are commonly used to identify a color: (1) hue, or the quality by which one color family is distinguished from another, such as red, yellow, blue, green, and intermediate terms; (2) value, or the quality that distinguishes a light color from a dark one; and (3) chroma, or the quality that distinguishes a strong color from a weak one, or the extent to which a color differs from a gray of the same value.
  三个属性通常用于识别颜色:(1)色调,或一个颜色族与另一个颜色族区别的质量,如红色、黄色、蓝色、绿色和中间术语;(2) 明度,或区分浅色和深色的品质;和(3)色度,或区分强颜色和弱颜色的质量,或颜色与相同值的灰色的差异程度。
  
  The three attributes of color may be used to define a three-dimensional color space in which any color is located by its coordinates. The color space chosen is a visually uniform one if the geometric distance between two colors in the color space is directly a measure of the color distance between them. Cylindrical coordinates are often conveniently chosen. Points along the long axis represent value from dark to light or black to white and have indeterminate hue and no chroma. Focusing on a cross-section perpendicular to the value axis, hue is determined by the angle about the long axis and chroma is determined by the distance from the long axis. Red, yellow, green, blue, purple, and intermediate hues are given by different angles. Colors along a radius of a cross-section have the same hue, which become more intense farther out. For example, colorless or achromic water has indeterminate hue, high value, and no chroma. If a colored solute is added, the water takes on a particular hue. As more is added, the color becomes darker, more intense, or deeper; i.e., the chroma generally increases and value decreases. If, however, the solute is a neutral color, i.e., gray, the value decreases, no increase in chroma is observed, and the hue remains indeterminate.
  颜色的三个属性可用于定义三维颜色空间,其中任何颜色都由其坐标定位。如果颜色空间中两种颜色之间的几何距离是它们之间颜色距离的直接度量,则选择的颜色空间在视觉上是一致的。柱坐标的选择通常很方便。长轴上的点代表从暗到亮或从黑到白的值,具有不确定的色调,没有色度。聚焦在垂直于明度轴的横截面上,色调由围绕长轴的角度决定,色度由与长轴的距离决定。红色、黄色、绿色、蓝色、紫色和中间色调由不同角度提供。沿着横截面半径的颜色具有相同的色调,越远越强烈。例如,无色或无色水具有不确定的色调、高值和无色度。如果加入有色溶质,水就会呈现特定的色调。添加越多,颜色越暗、越强烈或更深,色度通常增加,值降低。然而,如果溶质是中性色,即灰色,则该值会降低,没有观察到色度增加,并且色调仍不确定
  
  Laboratory spectroscopic measurements can be converted to measurements of the three color attributes. Spectroscopic results for three chosen lights or stimuli are weighted by three distribution functions to yield the tristimulus values, X, Y, Z (see Color—Instrumental Measurement <1061>). The distribution functions were determined in color matching experiments with human subjects.
  实验室光谱测量可以转换为三种颜色属性的测量。三个选定光或刺激的光谱结果通过三个分布函数进行加权,以产生三刺激值X、Y、Z(参见颜色仪器测量)。分布函数是在人类受试者的颜色匹配实验中确定的。
  
  The tristimulus values are not coordinates in a visually uniform color space; however, several transformations have been proposed that are close to being uniform, one of which is given in the chapter cited <1061> Color—Instrumental Measurement. The value is often a function of only the Y value. Obtaining uniformity in the chroma-hue subspace has been less satisfactory. In a practical sense, this means in visual color comparison that if two objects differ significantly in hue, deciding which has a higher chroma becomes difficult. This points out the importance of matching standard to sample color as closely as possible, especially for the attributes of hue and chroma.
  三刺激值不是视觉上均匀的颜色空间中的坐标;然而,已经提出了几种接近均匀的变换,其中一种在<1061>颜色仪器测量一章中给出。该值通常只是Y值的函数。在色度-色调子空间中获得均匀性不太令人满意。在实际意义上,这意味着在视觉颜色比较中,如果两个物体的色调明显不同,就很难决定哪个物体的色度更高。这就指出了尽可能接近样本颜色的匹配标准的重要性,尤其是对于色调和色度的属性。

COLOR DETERMINATION AND STANDARDS
颜色测定和标准
  The perception of color and color matches is dependent on conditions of viewing and illumination. Determinations should be made using diffuse, uniform illumination under conditions that reduce shadows and nonspectral reflectance to a minimum. The surface of powders should be smoothed with gentle pressure so that a planar surface free from irregularities is presented. Liquids should be compared in matched color-comparison tubes, against a white background. If results are found to vary with illumination, those obtained in natural or artificial daylight are to be considered correct. Instead of visual determination, a suitable instrumental method may be used.
  颜色和颜色匹配的感知取决于观看和照明条件。应在将阴影和非光谱反射率降至最低的条件下,使用漫反射、均匀照明进行测定。粉末表面应使用温和的压力进行平滑处理,以便呈现无不规则的平面。液体应在匹配的比色管中与白色背景进行比较。如果发现结果随照明而变化,则认为在自然或人工日光下获得的结果是正确的。可以使用合适的仪器方法代替目视测定。
  
  Colors of standards should be as close as possible to those of test specimens for quantifying color differences. Standards for opaque materials are available as sets of color chips that are arranged in a visually uniform space. * Standards identified by a letter for matching the colors of fluids can be prepared according to the accompanying table. To prepare the matching fluid required, pipet the prescribed volumes of the colorimetric test solutions [see under Colorimetric Solutions (CS) in the section Reagents, Indicators, and Solutions] and water into one of the matching containers, and mix the solution in the container. Make the comparison as directed in the individual monograph, under the viewing conditions previously described. The matching fluids, or other combinations of the colorimetric solutions, may be used in very low concentrations to measure deviation from achromicity.
  标准品的颜色应尽可能接近试样的颜色,以量化色差。不透明材料的标准可作为一组色片提供,色片排列在视觉上统一的空间。*可根据附表制备字母标识的流体颜色匹配标准。为制备所需的匹配液体,用移液管将规定体积的比色试验溶液[参见“试剂、指示剂和溶液”一节中的“比色溶液(CS)”和水移入其中一个匹配容器中,并在容器中混合溶液。在前面描述的观察条件下,按照各专题中的指示进行比较。匹配液体或比色溶液的其他组合可在非常低的浓度下使用,以测量色度偏差。

02

USP<630> VISUAL COMPARISON 视觉比较


The purpose of this test is to provide the details for the visual comparison of the color and/or turbidance of sample solutions of certain concentration to a standard solution or a series of standard solutions of known concentration. Where a color or turbidity comparison is directed, follow the procedures and conditions outlined below for performing these tests.

  本试验的目的是提供特定浓度的样品溶液与已知浓度的标准溶液或一系列标准溶液的颜色和/或浊度的视觉比较细节。如果需要进行颜色或浊度比较,请遵循以下程序和条件进行这些测试
  

Comparison vessels: Color-comparison tubes matched as closely as possible in internal diameter, in depth of sample solution, and in all other respects should be used.

对比容器:应使用内径、样品溶液深度和所有其他方面尽可能匹配的颜色对比管。

  

Viewing conditions for turbidity comparison: Tubes should be viewed horizontally against a dark background with the aid of a light source directed from the sides of the tubes.

浊度比较的观察条件:应在黑暗背景下,借助从管子侧面发出的光源水平观察管子。

  

Viewing conditions for color comparison: Tubes should be viewed downward against a white background. Most of the time, common room lighting is sufficient to perform the assessment. A light source directed from beneath the bottoms of the tubes may be used if needed and if the practice is consistent between the materials under comparison▲ 

颜色比较的观察条件:管子应在白色背景下向下观察。大多数情况下,公共空间照明足以进行评估。如果需要,并且对比材料之间的实验方法一致,可以从管底部下方引入光源进行观察。



COLORIMETRIC SOLUTIONS (CS)比色溶液
1. DEFINITION 定义
  Colorimetric solutions are used in the preparation of the colorimetric standards for certain drugs and for evaluating color in some monographs.
  For the preparation of matching fluids, see Color and Achromicity <631>.
   比色溶液用于制备某些药物的比色标准,并在一些专著中用于评估颜色。有关配套液体的制备,请参见呈色和消色<631>
  
2. STORAGE 存储
  Store colorimetric solutions in suitably resistant, tight containers.
  将比色溶液储存在适当的耐腐蚀、密闭容器中。

3. COMPARISON OF COLORS 颜色的比较
  Comparison of colors as directed in the Pharmacopeial tests preferably is made in matched color-comparison tubes or in a suitable colorimeter under conditions that ensure that the colorimetric reference solution and that of the specimen under test are treated alike in all respects. The comparison of colors is best made in layers of equal depth, and viewed transversely against a white background (see also ▲Visual Comparison <630>▲ 
  It is particularly important that the sample and standard be compared at the same temperature, preferably 25°.
  药典试验中指示的颜色比较最好在匹配的比色管或合适的色度计中进行,条件是确保比色参考溶液和受试样品在所有方面的处理都相同。颜色的比较最好在相同深度的层次上进行,并在白色背景下横向观察(另请参见▲Visual Comparison <630 >▲ 
  尤其重要的是,样品和标准品应在相同的温度下进行比较,最好是25℃。
  
  Cobaltous Chloride CS—Dissolve about 65 g of cobaltous chloride (CoCl2 · 6H2O) in enough of a mixture of 25 mL of hydrochloric acid and 975 mL of water to make 1000 mL. Pipet 5 mL of this solution into a 250-mL iodine flask, add 5 mL of hydrogen peroxide TS and 15 mL of sodium hydroxide solution (1 in 5), boil for 10 minutes, cool, and add 2 g of potassium iodide and 20 mL of dilute sulfuric acid (1 in 4). When the precipitate has dissolved, titrate the liberated iodine with 0.1 N sodium thiosulfate VS, adding 3 mL of starch TS as the indicator. Perform a blank determination with the same quantities of the same reagents, and make any necessary correction. Each mL of 0.1 N sodium thiosulfate is equivalent to 23.79 mg of CoCl2 · 6H2O. Adjust the final volume of the solution by the addition of enough of the mixture of hydrochloric acid and water so that each mL contains 59.5 mg of CoCl2 · 6H2O
  氯化钴比色溶液:将约65 g六水合氯化钴(CoCl2·6H2O)溶解在25 mL盐酸和975 mL水的混合液中,制成1000 mL溶液。用移液管将5 mL该溶液移入250 mL碘瓶中,加入5 mL过氧化氢和15 mL氢氧化钠溶液(1/5),煮沸10分钟,冷却,并加入2 g碘化钾和20 mL稀硫酸(1/4)。沉淀溶解后,用0.1 N硫代硫酸钠溶液滴定释放的碘,加入3 mL淀粉试液作为指示剂。使用相同量的相同试剂进行空白组的测定,并进行必要的校正。每毫升0.1 N硫代硫酸钠溶液相当于23.79 mg CoCl2·6H2O。通过添加足够多的盐酸和水的混合物来调整溶液的最终体积,使每毫升溶液含有59.5 mg CoCl2·6H2O。
  
  Cupric Sulfate CS—Dissolve about 65 g of cupric sulfate (CuSO4 · 5H2O) in enough of a mixture of 25 mL of hydrochloric acid and 975 mL of water to make 1000 mL. Pipet 10 mL of this solution into a 250-mL iodine flask, add 40 mL of water, 4 mL of acetic acid, 3 g of potassium iodide, and 5 mL of hydrochloric acid, and titrate the liberated iodine with 0.1 N sodium thiosulfate VS, adding 3 mL of starch TS as the indicator. Perform a blank determination with the same quantities of the same reagents, and make any necessary correction. Each mL of 0.1 N sodium thiosulfate is equivalent to 24.97 mg of CuSO4 · 5H2O. Adjust the final volume of the solution by the addition of enough of the mixture of hydrochloric acid and water so that each mL contains 62.4 mg of CuSO4 · 5H2O.
  硫酸铜比色液:将约65 g硫酸铜(CuSO4·5H2O)溶解在25 mL盐酸和975 mL水的足够混合物中,制成1000 mL溶液。用移液管将10 mL该溶液移到250 mL碘瓶中,加入40 mL水、4 mL醋酸、3 g碘化钾和5 mL盐酸,并用0.1 N硫代硫酸钠溶液滴定释放的碘,添加3 mL淀粉试液作为指示剂。使用相同数量的相同试剂进行空白测定,并进行必要的校正。每毫升0.1 N硫代硫酸钠溶液相当于24.97 mg CuSO4·5H2O。通过添加足够的盐酸和水的混合物来调整溶液的最终体积,使每毫升溶液含有62.4 mg CuSO4·5H2O。
  
  Ferric Chloride CS—Dissolve about 55 g of ferric chloride (FeCl3 · 6H2O) in enough of a mixture of 25 mL of hydrochloric acid and 975 mL of water to make 1000 mL. Pipet 10 mL of this solution into a 250-mL iodine flask, add 15 mL of water, 3 g of potassium iodide, and 5 mL of hydrochloric acid, and allow the mixture to stand for 15 minutes. Dilute with 100 mL of water, and titrate the liberated iodine with 0.1 N sodium thiosulfate VS, adding 3 mL of starch TS as the indicator. Perform a blank determination with the same quantities of the same reagents, and make any necessary correction. Each mL of 0.1 N sodium thiosulfate is equivalent to 27.03 mg of FeCl3 · 6H2O. Adjust the final volume of the solution by the addition of enough of the mixture of hydrochloric acid and water so that each mL contains 45.0 mg of FeCl3 · 6H2O.
  三氯化铁比色液:将约55 g三氯化铁(FeCl3·6H2O)溶解在25 mL盐酸和975 mL水的足够混合物中,制成1000 mL。用移液管将10 mL该溶液移到250 mL碘瓶中,添加15 mL水、3 g碘化钾和5 mL盐酸,并使混合物静置15分钟。用100 mL水稀释,用0.1 N硫代硫酸钠溶液滴定释放的碘,加入3 mL淀粉作为指示剂。使用相同数量的相同试剂进行空白测定,并进行必要的校正。每毫升0.1 N硫代硫酸钠溶液相当于27.03 mg FeCl3·6H2O。通过添加足够的盐酸和水的混合物来调整溶液的最终体积,使每毫升含有45.0 mg FeCl3·6H2O。

03

<1601>COLOR—INSTRUMENTAL MEASUREMENT 颜色-仪器测量


The observed color (see <631> Color and Achromicity) of an object depends on the spectral energy of the illumination, the absorbing characteristics of the object, and the visual sensitivity of the observer over the visible range. Similarly, it is essential that any instrumental method that is widely applicable take these same factors into account.

  观察到的物体颜色(参见<631> color and Achromicity)取决于照明的光谱能量、物体的吸收特性以及观察者在可见光范围内的视觉灵敏度。同样,任何广泛适用的仪器方法都必须考虑这些因素。
  

  Instrumental methods for measurement of color provide more objective data than the subjective viewing of colors by a small number of individuals. With adequate maintenance and calibration, instrumental methods can provide accurate and precise measurements of color and color differences that do not drift with time. The basis of any instrumental measurement of color is that the human eye has been shown to detect color via three “receptors.” Hence, all colors can be broken down into a mixture of three radiant stimuli that are suitably chosen to excite all three receptors in the eye. Although no single set of real light sources can be used to match all colors (i.e., for any three lights chosen, some colors require a negative amount of one or more of the lights), three arbitrary stimuli have been defined, with which it is possible to define all real colors. Through extensive color-matching experiments with human subjects having normal color vision, distributing coefficients have been measured for each visible wavelength (400 nm to 700 nm) giving the relative amount of stimulation of each receptor caused by light of that wavelength. These distribution coefficients x, y, z, are shown below. Similarly, for any color the amount of stimulation of each receptor in the eye is defined by the set of Tristimulus values (X, Y, and Z) for that color.

  与少数人主观观察颜色相比,测量颜色的仪器方法提供了更多的客观数据。通过充分的维护和校准,仪器方法可以提供不随时间漂移的颜色和色差的精确测量。任何仪器测量颜色的基础都是人眼通过三个“受体”检测颜色因此,所有的颜色都可以分解为三种辐射刺激的混合物,这些辐射刺激被适当地选择来激发眼睛中的三种受体。虽然没有一组真实光源可以用于匹配所有颜色(即,对于所选的任何三种灯光,某些颜色需要一种或多种灯光的负数),但已经定义了三种任意刺激,通过它们可以定义所有真实颜色。通过对具有正常色觉的人类受试者进行广泛的颜色匹配实验,测量了每个可见波长(400 nm至700 nm)的分布系数,给出了该波长的光对每个受体的相对刺激量。这些分布系数x、y、z如下所示。类似地,对于任何颜色,眼睛中每个受体的刺激量由该颜色的一组三刺激值(X、Y和Z)定义。

The relationships between the distribution coefficient (see accompanying figure) and the tristimulus values are given in the equations
  in which                              
  is the spectral power of the illuminant, and fλ is either the spectral reflectance (rλ) or spectral transmittance (tλ) of the material.
分布系数(见附图)和三刺激值之间的关系在方程式中给出
 其中是光源的光谱功率,fλ是材料的光谱反射率(rλ)或光谱透射率(tλ)
Once the tristimulus values of a color have been determined, they may be used to calculate the coordinates of the color in an idealized three-dimensional color space referred to as a visually uniform color space. Many sets of color equations have been developed in an attempt to define such a space. The equations given in this chapter represent a compromise between simplicity of calculation and conformance with ideality. 
  一旦确定了颜色的三刺激值,就可以使用它们来计算被称为视觉均匀颜色空间的理想三维颜色空间中的颜色坐标。为了定义这样一个空间,人们开发了许多颜色方程组。本章给出的方程式代表了计算简单性和符合理想性之间的折衷。
  

  The coordinates of a color in a visually uniform color space may be used to calculate the deviation of a color from a chosen reference point. Where the instrumental method is used to determine the result of a test requiring color comparison of a test preparation with that of a standard or matching fluid, the parameter to be compared is the difference, in visually uniform color space, between the color of the blank and the color of the test specimen or standard. 

  视觉上均匀的颜色空间中的颜色坐标可用于计算颜色与所选参考点的偏差。当仪器方法被用来确定一个测试的结果,要求测试制剂与标准或匹配流体的颜色比较时,要比较的参数是在空白均匀的颜色空间中,在空白的颜色和测试样品或标准的颜色之间的差异。
  
PROCEDURE步骤
  The considerations discussed under Ultraviolet-Visible Spectroscopy <857>apply to instrumental color measurement as well. In the spectrophotometric method, reflectance or transmittance values are obtained at discrete wavelengths throughout the visible spectrum, a band width of 10 nm or less being used. These values are then used to calculate the tristimulus values through the use of weighting factors. In the colorimetric method, the weighting is performed through the use of filters. 
  在紫外-可见光谱法下讨论的注意事项也适用于仪器颜色测量。在分光光度法中,在整个可见光谱的离散波长处获得反射率或透射率值,使用10 nm或更小的带宽。然后,通过使用加权因子,这些值被用来计算三刺激值。在比色法中,通过使用滤光片进行加权。
  
  In the measurement of the spectral reflectance of opaque solids, the angle of viewing is separated from the angle of illumination in such a manner that only rays reflected diffusely from the test specimen enter the receptor. Specular reflection and stray light are excluded.
  在不透明固体光谱反射率的测量中,观察角度与照明角度分开,应确保只有从试样漫反射的光线才能进入接收器。镜面反射和杂散光除外。
  
  For the measurement of the spectral transmittance of clear liquids, the specimen is irradiated from within 5 degrees of the normal to its surface, and the transmitted energy measured is that confined within 5 degrees from the normal. The color of solutions changes with the thickness of the layer measured. Unless special considerations dictate otherwise, a layer 1 cm thick should be used.
  对于透明液体光谱透射率的测量,试样从法线的5度范围内照射到其表面,测量的透射能量限制在法线的5度范围内。溶液的颜色随测量层的厚度而变化。除非特殊考虑另有规定,否则应使用1 cm厚的层。
  
  The methods described here are not applicable to hazy liquids or translucent solids. 
  此处描述的方法不适用于朦胧液体或半透明固体
  
Calibration 校准
  For purposes of calibration, one of the following reference materials may be used, as required by instrument geometry. For transmittance measurements, purified water may be used as a white standard and assigned a transmittance of 1.000 at all wavelengths. Then the tristimulus values X, Y, and Z for CIE source C are 98.0, 100.0, and 118.1, respectively. For reflectance measurements, opaque porcelain plaques, whose calibration base is the perfect diffuse reflector and whose reflectance characteristics have been determined for the appropriate instrumental geometry, may be used. If the geometry of sample presentation precludes the use of such plaques, pressed barium sulfate, white reflectance standard grade, may be used.
  出于校准目的,可根据仪器几何结构的要求使用以下标准物质之一。对于透射率测量,可将纯化水用作白色标准,并指定所有波长的透射率为1.000。然后CIE源C的三刺激值X、Y和Z分别为98.0、100.0和118.1。对于反射率测量,可以使用不透明瓷板,其校准基础是完美的漫反射器,并且其反射特性已根据适当的仪器几何形状确定。如果样品呈现的几何形状排除使用此类瓷板,压制硫酸钡 ,白色反射率标准等级,可使用。
  
  After calibration with the above-mentioned materials, it is desirable whenever possible to measure a reference material as close to the color of the sample as possible. If a sample of the material being tested is not suitable for use as a long-term standard, color chips are available 4 which span the entire visually uniform color space in small increments. The use of such a reference standard is encouraged as a means of monitoring instrument performance even for absolute color determinations.
  使用上述材料校准后,尽可能接近样品颜色测量参考材料是可取的。如果被测材料的样品不适合用作长期标准,则可使用色片,色片以小增量横跨整个视觉均匀的颜色空间。鼓励使用此类参考标准作为监测仪器性能的手段,即使用于绝对颜色测定。

Spectrophotometric Method 分光光度法
  Determine the reflectance or transmittance from 380 to 770 nm at intervals of 10 nm. Express the result as a percentage, the maximum being 100.0. Calculate the tristimulus values X, Y, and Z as follows. 
  以10 nm的间隔测定380至770 nm的反射率或透射率。将结果表示为百分比,最大值为100.0。计算三刺激值X、Y和Z,如下所示。

REFLECTING MATERIALS 反射材料:
For reflecting materials the quantities X, Y, Z are:
in which                   
is the spectral reflectance of the material, xλPλ, yλPλ, and zλPλ are known values associated with each Standard Source,1,2 and Δλ is expressed in nm.
对于反射材料,XYZ分别为
其中是材料的光谱反射率,xλPλ、yλPλ和zλPλ是与每个标准源相关的已知值,1,2和Δλ以nm为单位。

TRANSMITTING MATERIALS 透明材料
  For transmitting materials, the quantities X, Y, and Z are calculated as above, tλ (spectral transmittance) being substituted for rλ
  对于透射材料,X、Y和Z的量如上所述计算,用tλ(光谱透射率)代替rλ
  
Colorimetric Method 比色法
  Operate a suitable colorimeter to obtain values equivalent to the tristimulus values, X, Y, and Z. The accuracy with which the results obtained from the filter colorimeter match the tristimulus values may be indicated by determining the tristimulus values of plaques of strongly saturated colors and comparing these values with those computed from spectral measurements on a spectrophotometer.
  操作合适的色度计,以获得与三刺激值X、Y和Z相等的值,通过测定强饱和颜色斑块的三刺激值,并将这些值与分光光度计上光谱测量计算的值进行比较,可以指示从滤光片色度计获得的结果与三刺激值匹配的精度。
  
INTERPRETATION注释
Color Coordinates颜色坐标
  The Color Coordinates, L*, a*, and b* are defined by
  颜色坐标L*、a*和b*由以下公式定义:
in which X0, Y0, and Z0 are the tristimulus values of the nominally white or colorless standard, and Y/Y0>0.01. Usually they are equal to the tristimulus values of the standard illuminant, with Y0 set equal to 100.0. In this case X0 = 98.0 and Z0 = 118.1.
  其中X0、Y0和Z0是名义上白色或无色标准的三刺激值,Y/Y0>0.01。通常它们等于标准光源的三刺激值,Y0设置为100.0。在这种情况下,X0=98.0和Z0=118.1。

Color Difference 色差
  The total Color Difference ΔE* is
in which ΔL*, Δa*, and Δb* are the differences in color coordinates of the specimens being compared.
  式中,ΔL*、Δa*和Δb*是被比较样本颜色坐标的差异。
  
  Instrumental variables can influence results. Although reliable comparisons can be made between similar colors measured concomitantly, results obtained on different instruments or under different operating conditions should be compared with caution. If it is necessary to compare data obtained from different instruments or taken at different times, etc., it is very helpful to have concomitant data obtained on a standard reference material such as color chips for opaque materials. Comparison of the readings on the reference material helps to identify variations caused by instrument performance.
  工具变量可以影响结果。虽然可以在同时测量的类似颜色之间进行可靠的比较,但在不同仪器或不同操作条件下获得的结果应谨慎进行比较。如果有必要比较从不同仪器获得的数据或在不同时间获取的数据等,在标准参考材料(如不透明材料的色片)上获得的伴随数据非常有用。对比参考材料上的读数有助于识别仪器性能引起的变化。


欧洲药典溶液颜色检查规范<中英双译>

                                                             

EP 2.2.2. DEGREE OF COLORATION OF LIQUIDS

液体的着色度


The examination of the degree of coloration of liquids in the range brown-yellow-red is carried out by one of the 2 methods below, as prescribed in the monograph.

根据专论中的规定,通过以下两种方法之一,对褐-黄-红色范围内的液体着色程度进行检查。

A solution is colourless if it has the appearance of water R or the solvent or is not more intensely coloured than reference solution B9.
如果溶液的外观为水,颜色不比参考溶液B9强烈,则溶液为无色。
  
METHOD I方法1
Using identical tubes of colourless, transparent, neutral glass of 12 mm external diameter, compare 2.0 mL of the liquid to be examined with 2.0 mL of water R or of the solvent or of the reference solution (see Tables of reference solutions) prescribed in the monograph. Compare the colours in diffused daylight, viewing horizontally against a white background.
使用外径为12 mm的无色透明中性玻璃管,将2.0 mL待检液体与2.0 mL对照溶液(见参考溶液表)进行比较。比较漫射日光下的颜色,在白色背景下水平观察。

METHOD II 方法2
Using identical tubes of colourless, transparent, neutral glass with a flat base and an internal diameter of 15 mm to 25 mm, compare the liquid to be examined with water R or the solvent or the reference solution (see Tables of reference solutions) prescribed in the monograph, the depth of the layer being 40 mm. Compare the colours in diffused daylight, viewing vertically against a white background.
使用相同的无色、透明、中性玻璃管,底部平坦,内径为15 mm至25 mm,将待检测液体对照溶液(见参考溶液表)进行比较,层深为40 mm。比较漫射日光下的颜色,在白色背景下垂直观察。

REAGENTS 试剂
Primary solutions 初级溶液
Yellow solution. Dissolve 46 g of ferric chloride R in about 900 mL of a mixture of 25 mL of hydrochloric acid R and 975 mL of water R and dilute to 1000.0 mL with the same mixture. Titrate and adjust the solution to contain 45.0 mg of FeCl3,6H2O per millilitre by adding the same acidic mixture. Protect the solution from light.
Titration. Place in a 250 mL conical flask fitted with a ground-glass stopper, 10.0 mL of the solution, 15 mL of water R, 5 mL of hydrochloric acid R and 4 g of potassium iodide R, close the flask, allow to stand in the dark for 15 min and add 100 mL of water R. Titrate the liberated iodine with 0.1 M sodium thiosulfate, using 0.5 mL of starch solution R, added towards the end of the titration, as indicator. 
1 mL of 0.1 M sodium thiosulfate is equivalent to 27.03 mg of FeCl3,6H2O.
黄色初级溶液。在约900 mL的盐酸和975 mL的水中加入4.6 g六水合三氯化铁,并用相同的混合物稀释至1000.0 mL。通过添加相同的酸性混合物,滴定并调整溶液,使其每毫升含有45.0 mg FeCl3·6H2O。溶液避免光照。
滴定。将10.0 mL溶液、15 mL水、5 mL盐酸和4 g碘化钾放入装有磨砂玻璃塞的250 mL锥形烧瓶中,关闭烧瓶,让其在黑暗中静置15分钟,并添加100 mL水。用0.1 M硫代硫酸钠溶液滴定释放的碘。5 mL淀粉溶液,在滴定结束时加入,作为指示剂。
1 mL 的0.1 M硫代硫酸钠溶液相当于27.03 mg六水合三氯化铁FeCl3·6H2O。
  
Red solution. Dissolve 60 g of cobalt chloride R in about 900 mL of a mixture of 25 mL of hydrochloric acid R and 975 mL of water R and dilute to 1000.0 mL with the same mixture. Titrate and adjust the solution to contain 59.5 mg of CoCl2,6H2O per millilitre by adding the same acidic mixture.
Titration. Place in a 250 mL conical flask fitted with a round-glass stopper, 5.0 mL of the solution, 5 mL of dilute hydrogen peroxide solution R and 10 mL of a 300 g/L solution of sodium hydroxide R. Boil gently for 10 min, allow to cool and 60 mL of dilute sulfuric acid R and 2 g of potassium iodide R. Close the flask and dissolve the precipitate by shaking gently. Titrate the liberated iodine with 0.1 M sodium thiosulfate, using 0.5 mL of starch solution R, added towards the end of the titration, as indicator. The end-point is reached when the solution turns pink 。
1 mL of 0.1 M sodium thiosulfate is equivalent to 23.79 mg of CoCl2,6H2O
红色初级溶液。将60 g二水合氯化钴溶解在约900 mL的25 mL盐酸和975 mL水的混合物中,并用相同的混合物稀释至1000.0 mL。通过添加相同的酸性混合物,滴定并调整溶液,使其每毫升含有59.5 mg CoCl2·6H2O。
滴定。将5.0 mL溶液、5 mL稀释过氧化氢溶液和10 mL 300 g/L氢氧化钠溶液放入装有圆形玻璃塞的250 mL锥形烧瓶中。轻轻煮沸10 min,冷却后加入60 mL稀硫酸和2 g碘化钾。关闭烧瓶,用0.1 M硫代硫酸钠溶液轻轻摇动,溶解沉淀物,使用淀粉溶液,在滴定结束时添加,作为指示剂。当溶液变成粉红色时,即达到终点。
1 mL的0.1 M硫代硫酸钠溶液相当于23.79 mg的六水合氯化钴CoCl2·6H2O。
  
Blue primary solution. Dissolve 63 g of copper sulfate pentahydrate R in about 900 mL of a mixture of 25 mL of hydrochloric acid R and 975 mL of water R and dilute to 1000.0 mL with the same mixture. Titrate and adjust the solution to contain 62.4 mg of CuSO4,5H2O per millilitre by adding the same acidic mixture. 
Titration. Place in a 250 mL conical flask fitted with a ground-glass stopper, 10.0 mL of the solution, 50 mL of water R, 12 mL of dilute acetic acid R and 3 g of potassium iodide R. Titrate the liberated iodine with 0.1 M sodium thiosulfate, using 0.5 mL of starch solution R, added towards the end of the titration, as indicator. The end-point is reached when the solution shows a slight pale brown colour.
1 mL of 0.1 M sodium thiosulfate is equivalent to 24.97 mg of CuSO4,5H2O.
蓝色初级溶液。将63 g五水硫酸铜溶解在约900 mL的25 mL盐酸和975 mL水的混合物中,并用相同的混合物稀释至1000.0 mL。通过添加相同的酸性混合物,滴定并调整溶液,使其每毫升含有62.4 mg CuSO4·5H2O。
滴定。将10.0 mL溶液、50 mL水、1.2 mL稀醋酸和3g碘化钾放入装有磨砂玻璃塞的250 mL锥形烧瓶中。用0.1 M硫代硫酸钠溶液滴定释放的碘,使用0.5 mL淀粉溶液,在滴定结束时添加,作为指示剂。当溶液呈现轻微的淡棕色时,即达到终点。
1 mL的0.1 M硫代硫酸钠溶液相当于24.97 mg五水合硫酸铜CuSO4·5H2O。

Standard solutions标准溶液
Using the 3 primary solutions, prepare the 5 standard solutions as follows (Table 2.2.2.-1):使用3种初始溶液制备5种标准溶液,如下所示(表2.2.2.-1)
Reference solutions for Methods I and II 方法I和II的参考溶液

Storage 储存
For Method I, the reference solutions may be stored in sealed tubes of colourless, transparent, neutral glass of 12 mm external diameter, protected from light. 
对于方法I,参考溶液可储存在无色、透明、外径为12 mm的中性玻璃密封管中,避免光线照射。
For Method II, prepare the reference solutions immediately before use from the standard solutions.
对于方法II,使用前立即从标准溶液中制备参考溶液。


日本药典溶液颜色检查规范<中英双译>

JP 2.65 Methods for Color Matching 颜色匹配方法


 Methods for Color Matching are applied to the purity test where the color of a test solution is examined by comparing with a matching fluid for color.

 颜色匹配方法适用于纯度测试,其中通过与比色液的颜色进行比较来检查测试溶液的颜色。

  

1. Matching fluids for color比色液

Matching fluids for color A to T are prepared by measuring exactly the volume of three colorimetric stock solutions and water as directed in Table 2.65-1 with a buret or a pipet graduated to less than 0.1 mL, and mixing. Store the solutions in glass-stoppered bottles.
根据表2.65-1的指示,使用滴定管或刻度小于0.1 mL的移液管精确测量三种比色储备溶液和水的体积,并混合,制备颜色A至T的比色液体。将溶液储存在玻璃塞瓶中。 

  

  For each of the matching fluids of B-series (B1 to B9), BY series (BY1 to BY7), Y-series (Y1 to Y7), GY-series (GY1 to GY7) and R-series (R1 to R7), the primary matching solutions for individual color are prepared first by mixing the three colorimetric stock solutions as directed in Table 2.65-2, then mix the primary matching solution for corresponding color as directed in Table 2.65-3 to prepare desired matching fluid for color.

  对于B系列(B1至B9)、BY系列(BY1至BY7)、Y系列(Y1至Y7)、GY系列(GY1至GY7)和R系列(R1至R7)的每一种比色液,首先按照表2.65-2的指示,通过混合三种比色储备溶液来制备单独颜色的主要比色液,然后按照表2.65-3中的指示混合相应颜色的主要比色液,以制备所需的比色液。

  

2. Procedure 步骤

Compare a test solution with a matching fluid for color specified in monograph according to the following manners, and confirm that the test solution has no more color than the specified matching fluid for color.
按照以下方式将供试品溶液与专论中规定的颜色比色液进行比较,并确认供试品溶液的颜色不超过规定的颜色比色液。

  

  When the matching fluids for color A to T are used, unless otherwise specified, place the test solution and the matching fluid for color in Nessler tubes, and view transversely against a white background.

  当使用颜色A至T的比色液时,除非另有规定,否则应将试液和比色液放入纳氏管中,并在白色背景下横向观察。

  

When the matching fluids for color of B-series, BY-series, Y-series, GY-series or R-series are used, compare the color by the following two methods, and state the used method number in the monograph. A solution is colourless if it has the appearance of water or the solvent or is not more intensely coloured than matching solution B9.
当使用B系列、BY系列、Y系列、GY系列或R系列的比色液时,通过以下两种方法比较颜色,并在专论中说明使用的方法编号。如果溶液具有水或溶剂的外观,或颜色没有比色液B9深,则溶液为无色。

  

Method 1: Place separately 2.0 mL each of a test solution and a reference liquid such as water, solvent or the matching fluid for color specified in the monograph in clear and colorless glass test tubes, 12 mm in outside diameter, and compare the color by viewing transversely against a white background under scattering light.
方法1:将供试品溶液和参考液体(如水、溶剂或专论中规定颜色的比色液)各2.0 mL分别置于外径为12 mm的透明和无色玻璃试管中,并在散射光下在白色背景下横向观察,比较颜色。

  

Method 2: Place separately a test solution and a reference liquid such as water, solvent or the matching fluid for color specified in the monograph in clear and colorless flat-bottom test tubes, 15 – 25 mm in internal diameter, so that the depth of the layer is 40 mm, and compare the color by viewing vertically against a white background under scattering light.
方法2:将供试品溶液和参考液体(如水、溶剂或专论中规定颜色的比色液)分别放入内径为15–25 mm的透明无色平底试管中,使该层的深度为40 mm,在散射光下,在白色背景下垂直观察,比较颜色。

  

3. Colorimetric stock solutions 比色原液

Cobalt (II) Chloride CS: Dissolve 65 g of cobalt (II) chloride hexahydrate in 25 mL of hydrochloric acid and water to make 1000 mL. Pipet 10 mL of this solution, add water to make exactly 250 mL. Pipet 25 mL of the solution, add 75 mL of water and 50 mg of mulexide sodium chloride indicator, and add dropwise diluted ammonia solution (28) (1 in 10) until the color of the solution changes from red-purple to orange-yellow. Titrate <2.50> with 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS until the color of the solution changes from yellow to red-purple, after the addition of 0.2 mL of diluted ammonia solution (28) (1 in 10) near the end-point.

Each mL of 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS

= 2.379 mg of CoCl2.6H2O

According to the titrated value, add diluted hydrochloric acid (1 in 40) to make a solution containing 59.5 mg of cobalt (II) chloride hexahydrate (CoCl2.6H2O: 237.93) in each mL, and use. Store the solution in a glass-stoppered bottle.

氯化钴(II)CS:将65 g六水合氯化钴溶解在25 mL盐酸和水中,制成1000 mL。用移液管移取10 mL该溶液,加水精确至250 mL。用移液管移取25 mL溶液,加入75 mL水和50 mg多氯化钠指示剂,然后滴加稀释氨溶液(1/10),直到溶液颜色从红紫色变为橙黄色。在接近终点处添加0.2 mL稀释氨溶液(1/10)后,用0.01 mol/L乙二胺四乙酸二钠滴定,直到溶液颜色从黄色变为红紫色。

每毫升0.01 mol/L二氢乙二胺四乙酸二钠相当于2.379 mg六水合氯化钴 CoCl2·6H2O。

根据滴定值,加入稀盐酸(1/40),制成每毫升含有59.5 mg六水合氯化钴(II)的溶液,并使用。将溶液储存在玻璃塞瓶中。

  
Copper (II) Sulfate CS: Dissolve 65 g of copper (II) sulfate pentahydrate in 25 mL of hydrochloric acid and water to make 1000 mL. Pipet 10 mL of this solution, and add water to make exactly 250 mL. Pipet 25 mL of this solution, add 75 mL of water, 10 mL of a solution of ammonium chloride (3 in 50), 2 mL of diluted ammonia solution (28) (1 in 10) and 50 mg of mulexide-sodium chloride indicator. Titrate <2.50> with 0.01 mol/L disodium dihydrogen ethylene-diamine tetraacetate VS until the color of the solution changes from green to purple.
Each mL of 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS
= 2.497 mg of CuSO4.5H2O
According to the titrated value, add diluted hydrochloric acid (1 in 40) to make a solution containing 62.4 mg of copper (II) sulfate pentahydrate (CuSO4.5H2O: 249.69) in each mL, and use. Store the solution in a glass-stoppered bottle.
硫酸铜(II)CS:将65 g五水合硫酸铜(II)溶解于25 mL盐酸和水中,制成1000 mL。移液管取10 mL该溶液,加水至250 mL。移液管取25 mL该溶液,加入75 mL水,10 mL氯化铵溶液(3:50),2 mL稀释氨溶液(1/10)和50 mg多氯化钠化指示剂。用0.01 mol/L二氢乙二胺四乙酸二钠滴定,直到溶液颜色从绿色变为紫色。
每1 mL的0.01 mol/L的二氢乙二胺四乙酸二钠相当于2.497 mg的五水合硫酸铜CuSO4·5H2O。
根据滴定值,加入稀盐酸(1/40),制成每毫升含有62.4 mg五水硫酸铜(II)的溶液,并使用。将溶液储存在玻璃塞瓶中。

  

Iron (III) Chloride CS: Dissolve 55 g of iron (III) chloride hexahydrate in 25 mL of hydrochloric acid and water to make 1000 mL. Pipet 10 mL of this solution in an iodine flask, add 15 mL of water and 3 g of potassium iodide, stop- per tightly, and allow to stand in a dark place for 15 minutes. Add 100 mL of water to the mixture, and titrate <2.50> the liberated iodine with 0.1 mol/L sodium thiosulfate VS (indicator: 1 mL of starch TS).

Each mL of 0.1 mol/L sodium thiosulfate VS
= 27.03 mg of FeCl3.6H2O
According to the titrated value, add diluted hydrochloric acid (1 in 40) to make a solution containing 45.0 mg of iron (III) chloride hexahydrate (FeCl3.6H2O: 270.30) in each mL, and use. Store the solution in a glass-stoppered bottle.
氯化铁(III)CS:将55 g六水合三氯化铁溶解在25 mL盐酸和水中,制成1000 mL溶液。用移液管将10 mL该溶液移到碘瓶中,加入15 mL水和3 g碘化钾,塞紧瓶塞,在黑暗处静置15分钟。向混合物中加入100 mL水,并用0.1 mol/L硫代硫酸钠溶液(相当于1 mL淀粉指示剂)滴定游离的碘。
每毫升0.1 mol/L硫代硫酸钠溶液相当于27.03 mg六水合三氯化铁 FeCl3·6H2O。
根据滴定值,加入稀释的盐酸(1/40),制成每毫升含有45.0 mg六水合三氯化铁(III)的溶液,并使用。将溶液储存在玻璃塞瓶中。





解决方案

胤煌科技针对药剂的溶液颜色检查推出了以下产品


01

Qz-82a溶液颜色检查专用伞棚灯


此溶液颜色检查专用伞棚灯是专门针对于目视法溶液颜色检查推出的设备,拥有日光型COB集成LED光源,在完成溶液颜色检查的同时,可以减少光源对眼睛的刺激。另外,此仪器可以同时实现水平角度和垂直角度的溶液观察,能有效简化操作,更快得到对比结果。

02

YH-COS-0101溶液颜色检查分析仪



此仪器采用D65组合LED光源对液体溶剂进行透射式测量,仪器不仅具有传统的色度色差测量,同时内置中国药典标准比色液库,可以选配欧洲药典或美国药典比色数据库,可以直接测量出待测溶液的色号。

关注我们,回复“溶液颜色”
自动获取下载链接,感谢您的支持!


  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018
  • 客服电话: 400-6699-117 转 1000
  • 京ICP备07018254号
  • 电信与信息服务业务经营许可证:京ICP证110310号
  • 京公网安备1101085018

Copyright ©2007-2024 ANTPEDIA, All Rights Reserved